Skip to main content
Log in

Antiproliferative effects of galectin-1 from Rana catesbeiana eggs on human leukemia cells and its binding proteins in human cells

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

Galectin-1 from American bullfrog, RCG1, was isolated to high purity, and its growth inhibitory properties against human cells were examined. The results demonstrated that highly purified RCG1 induced large cell aggregates and revealed cell-type-specific growth inhibition. It significantly inhibited all human leukemia cell lines tested such as HL-60, U937, and K562 cells but did not inhibit human colon cancer cell line, Colo 201, or mouse mammary tumor cell line FM3A cells. Although most of the galectin-induced growth inhibitions are known to be apoptic, RCG1 induced growth arrest and neither apoptosis nor necrosis. RCG1-mediated growth inhibition was specifically suppressed by the corresponding sugar, lactose, but not by sucrose or even the structurally similar sugar, melibiose. Several studies have reported that galectin-mediated biological functions were modulated by charge modification. Since the high purity of RCG1 was demonstrated but a moderate degree of growth inhibition occurred, it is possible protein charge modification was examined by isoelectric focusing, and it was found to be highly heterogeneous in charge. RCG1 binding proteins in human cells were analyzed by lectin blotting using biotinylated RCG1, and lectin blotting revealed that in human cell extracts the specific proteins at molecular weight 37 and 50 kDa possessed the responsive features of RCG1 binding and lactose competition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.

Similar content being viewed by others

References

  • Dumic J.; Dabelic S.; Flogel M. Galectin-3: an open-ended story. Biochim Biophys Acta 1760: 616–635; 2006.

    Article  PubMed  CAS  Google Scholar 

  • Fink De Cabutti N. E.; Caron M.; Joubert R.; Elola M. T.; Bladier D.; Herkovitz J. Purification and some characteristics of a beta-galactoside binding soluble lectin from amphibian ovary. FEBS Lett 223: 330–334; 1987.

    Article  PubMed  CAS  Google Scholar 

  • Hasan S. S.; Ashraf G. M.; Banu N. Galectins—potential targets for cancer therapy. Cancer Lett 253: 25–33; 2007.

    Article  PubMed  CAS  Google Scholar 

  • Hernandez J. D.; Baum L. G. Ah, sweet mystery of death! Galectins and control of cell fate. Glycobiology 12: 127R–136R; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Hsu D. K.; Yang R. Y.; Liu F. T. Galectins in apoptosis. Methods Enzymol 417: 256–273; 2006.

    Article  PubMed  CAS  Google Scholar 

  • Iwama M.; Ogawa Y.; Sasaki N.; Nitta K.; Takayanagi Y.; Ohgi K.; Tsuji T.; Irie M. Effect of modification of the carboxyl groups of the sialic acid binding lectin from bullfrog (Rana catesbeiana) oocyte on anti-tumor activity. Biol Pharm Bull 24: 978–981; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Kawauchi H.; Sakakibara F.; Watanabe K. Agglutinins of frog eggs: a new class of proteins causing preferential agglutination of tumor cells. Experientia 31: 364–365; 1975.

    Article  PubMed  CAS  Google Scholar 

  • Kawsar S. M.; Matsumoto R.; Fujii Y.; Yasumitsu H.; Uchiyama H.; Hosono M.; Nitta K.; Hamako J.; Matsui T.; Kojima N.; Ozeki Y. Glycan-binding profile and cell adhesion activity of American bullfrog (Rana catesbeiana) oocyte galectin-1. Protein Pept Lett 16: 677–684; 2009.

    Article  PubMed  CAS  Google Scholar 

  • Lord J. M. The use of cytotoxic plant lectins in cancer therapy. Plant Physiol 85: 1–3; 1987.

    Article  PubMed  CAS  Google Scholar 

  • Mazurek N.; Conklin J.; Byrd J. C.; Raz A.; Bresalier R. S. Phosphorylation of the beta-galactoside-binding protein galectin-3 modulates binding to its ligands. J Biol Chem 275: 36311–36315; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Mody R.; Joshi S.; Chaney W. Use of lectins as diagnostic and therapeutic tools for cancer. J Pharmacol Toxicol Methods 33: 1–10; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Nakahara S.; Raz A. On the role of galectins in signal transduction. Methods Enzymol 417: 273–289; 2006.

    Article  PubMed  CAS  Google Scholar 

  • Nishihara T.; Wyrick R. E.; Working P. K.; Chen Y. H.; Hedrick J. L. Isolation and characterization of a lectin from the cortical granules of Xenopus laevis eggs. Biochemistry 25: 6013–6020; 1986.

    Article  PubMed  CAS  Google Scholar 

  • Nitta K.; Ozaki K.; Tsukamoto Y.; Furusawa S.; Ohkubo Y.; Takimoto H.; Murata R.; Hosono M.; Hikichi N.; Sasaki K. et al. Characterization of a Rana catesbeiana lectin-resistant mutant of leukemia P388 cells. Cancer Res 54: 928–934; 1994.

    PubMed  CAS  Google Scholar 

  • Nitta K.; Takayanagi G.; Kawauchi H.; Hakomori S. Isolation and characterization of Rana catesbeiana lectin and demonstration of the lectin-binding glycoprotein of rodent and human tumor cell membranes. Cancer Res 47: 4877–4883; 1987.

    PubMed  CAS  Google Scholar 

  • Ozeki Y.; Matsui T.; Nitta K.; Kawauchi H.; Takayanagi Y.; Titani K. Purification and characterization of beta-galactoside binding lectin from frog (Rana catesbeiana) eggs. Biochem Biophys Res Commun 178: 407–413; 1991a.

    Article  PubMed  CAS  Google Scholar 

  • Ozeki Y.; Matsui T.; Titani K. Cell adhesive activity of two animal lectins through different recognition mechanisms. FEBS Lett 289: 145–147; 1991b.

    Article  PubMed  CAS  Google Scholar 

  • Rapoport E. M.; Kurmyshkina O. V.; Bovin N. V. Mammalian galectins: structure, carbohydrate specificity, and functions. Biochemistry (Mosc) 73: 393–405; 2008.

    Article  CAS  Google Scholar 

  • Roberson M. M.; Barondes S. H. Lectin from embryos and oocytes of Xenopus laevis. Purification and properties. J Biol Chem 257: 7520–7524; 1982.

    PubMed  CAS  Google Scholar 

  • Sharon N.; Lis H. Lectins. 2nd ed. Kluwer Academic, The Netherlands; 2003.

    Google Scholar 

  • Yang R. Y.; Rabinovich G. A.; Liu F. T. Galectins: structure, function and therapeutic potential. Expert Rev Mol Med 10: e17; 2008.

    Article  PubMed  Google Scholar 

  • Yasumitsu H.; Miyazaki K.; Umenishi F.; Koshikawa N.; Umeda M. Comparison of extracellular matrix-degrading activities between 64-kDa and 90-kDa gelatinases purified in inhibitor-free forms from human schwannoma cells. J Biochem 111: 74–80; 1992.

    PubMed  CAS  Google Scholar 

  • Yoshii T.; Fukumori T.; Honjo Y.; Inohara H.; Kim H. R.; Raz A. Galectin-3 phosphorylation is required for its anti-apoptotic function and cell cycle arrest. J Biol Chem 277: 6852–6857; 2002.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Mr. H. Ito, Kihara Institute for Biological Research for his help. This work was supported by a grant for 2009 Strategic Research Project (No. T2114) of Yokohama City University, Japan and by the grant of 2010 Yokohama Academic Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hidetaro Yasumitsu.

Additional information

Editor: T. Okamoto

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yasumitsu, H., Mochida, K., Yasuda, C. et al. Antiproliferative effects of galectin-1 from Rana catesbeiana eggs on human leukemia cells and its binding proteins in human cells. In Vitro Cell.Dev.Biol.-Animal 47, 728–734 (2011). https://doi.org/10.1007/s11626-011-9462-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-011-9462-z

Keywords

Navigation