Skip to main content
Log in

The establishment and characterization of immortal hepatocyte cell lines from a mouse liver injury model

  • Report
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

Hepatocytes are an important research tool used for numerous applications. However, a short life span and a limited capacity to replicate in vitro limit the usefulness of primary hepatocyte cultures. We have hypothesized that in vivo priming of hepatocyte could make them more susceptible to growth factors in the medium for continuous proliferation in vitro. Here, a novel approach used to establish hepatocyte cell lines that included hepatocyte priming in vivo prior to culture with a 3,5-diethoxycarbonyl-1,4-dihydrocollidine diet was attempted. The cell line grew in a monolayer while maintaining a granular cytoplasm and a round nucleus. Electron microscopy displayed hepatocyte-like features including mitochondria, glycogen granules, and the presence of bile canaliculi. This cell line expressed many mature hepatocyte-specific genes including albumin, alpha1-antitrypsin, glucose 6-phosphatase, and tyrosine aminotransferase. Functional characteristic of hepatocytes like the ability to store glycogen, lipid, and synthesis of urea is well demonstrated by this cell line. These cells demonstrated anchorage dependent growth properties in soft agar and did not form tumors after transplantation into nude mice. This cell line can be sustained in culture for more than 100 passages (>1.5 years) without undergoing noticeable morphological changes or transformation. This novel method resulted in the establishment of an immortal, non-transformed hepatocyte cell line with functional characteristics that may aid research of cell metabolism, toxicology, and hepatocyte transplantation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2
Figure 3.

Similar content being viewed by others

References

  • Aden D. P.; Fogel A.; Plotkin S.; Damjanov I.; Knowles B. B. Controlled synthesis of HBsAg in a differentiated human liver carcinoma-derived cell line. Nature 282: 615–616; 1979.

    Article  PubMed  CAS  Google Scholar 

  • Chamuleau R. A.; Deurholt T.; Hoekstra R. Which are the right cells to be used in a bioartificial liver? Metab. Brain Dis. 20: 327–335; 2005.

    Article  PubMed  Google Scholar 

  • Denk H.; Stumptner C.; Zatloukal K. Mallory bodies revisited. J. Hepatol. 32: 689–702; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Dippold W. G.; Dienes H. P.; Knuth A.; Sachsse W.; Prellwitz W.; Bitter-Suermann D.; Meyer zum Buschenfelde K. H. Hepatocellular carcinoma after thorotrast exposure: establishment of a new cell line (Mz-Hep-1). Hepatology 5: 1112–1119; 1985.

    Article  PubMed  CAS  Google Scholar 

  • Fickert P.; Stoger U.; Fuchsbichler A.; Moustafa T.; Marschall H. U.; Weiglein A. H.; Tsybrovskyy O.; Jaeschke H.; Zatloukal K.; Denk H.; Trauner M. A new xenobiotic-induced mouse model of sclerosing cholangitis and biliary fibrosis. Am. J. Pathol. 171: 525–536; 2007.

    Article  PubMed  CAS  Google Scholar 

  • Fickert P.; Trauner M.; Fuchsbichler A.; Stumptner C.; Zatloukal K.; Denk H. Bile acid-induced Mallory body formation in drug-primed mouse liver. Am. J. Pathol. 161: 2019–2026; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Fickert P.; Trauner M.; Fuchsbichler A.; Stumptner C.; Zatloukal K.; Denk H. Mallory body formation in primary biliary cirrhosis is associated with increased amounts and abnormal phosphorylation and ubiquitination of cytokeratins. J. Hepatol. 38: 387–394; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Guguen-Guillouzo C.; Clement B.; Baffet G.; Beaumont C.; Morel-Chany E.; Glaise D.; Guillouzo A. Maintenance and reversibility of active albumin secretion by adult rat hepatocytes co-cultured with another liver epithelial cell type. Exp. Cell Res. 143: 47–54; 1983.

    Article  PubMed  CAS  Google Scholar 

  • Harris C. C. Human tissues and cells in carcinogenesis research. Cancer Res. 47: 1–10; 1987.

    PubMed  CAS  Google Scholar 

  • Isom H. C.; Secott T.; Georgoff I.; Woodworth C.; Mummaw J. Maintenance of differentiated rat hepatocytes in primary culture. Proc. Natl. Acad. Sci. U.S.A. 82: 3252–3256; 1985.

    Article  PubMed  CAS  Google Scholar 

  • Jakubowski A.; Ambrose C.; Parr M.; Lincecum J. M.; Wang M. Z.; Zheng T. S.; Browning B.; Michaelson J. S.; Baetscher M.; Wang B.; Bissell D. M.; Burkly L. C. TWEAK induces liver progenitor cell proliferation. J. Clin. Invest. 115: 2330–2340; 2005.

    Article  PubMed  CAS  Google Scholar 

  • Kirillova I.; Chaisson M.; Fausto N. Tumor necrosis factor induces DNA replication in hepatic cells through nuclear factor kappaB activation. Cell Growth Differ. 10: 819–828; 1999.

    PubMed  CAS  Google Scholar 

  • Knowles B. B.; Howe C. C.; Aden D. P. Human hepatocellular carcinoma cell lines secrete the major plasma proteins and hepatitis B surface antigen. Science 209: 497–499; 1980.

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi N.; Fujiwara T.; Westerman K. A.; Inoue Y.; Sakaguchi M.; Noguchi H.; Miyazaki M.; Cai J.; Tanaka N.; Fox I. J.; Leboulch P. Prevention of acute liver failure in rats with reversibly immortalized human hepatocytes. Science 287: 1258–1262; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Kono Y.; Yang S.; Letarte M.; Roberts E. A. Establishment of a human hepatocyte line derived from primary culture in a collagen gel sandwich culture system. Exp. Cell Res. 221: 478–485; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Le Rumeur E.; Guguen-Guillouzo C.; Beaumont C.; Saunier A.; Guillouzo A. Albumin secretion and protein synthesis by cultured diploid and tetraploid rat hepatocytes separated by elutriation. Exp. Cell Res. 147: 247–254; 1983.

    Article  PubMed  Google Scholar 

  • Lemaigre F.; Zaret K. S. Liver development update: new embryo models, cell lineage control, and morphogenesis. Curr. Opin. Genet. Dev. 14: 582–590; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Nawa K.; Nakamura T.; Kumatori A.; Noda C.; Ichihara A. Glucocorticoid-dependent expression of the albumin gene in adult rat hepatocytes. J. Biol. Chem. 261: 16883–16888; 1986.

    PubMed  CAS  Google Scholar 

  • Nguyen T. H.; Mai G.; Villiger P.; Oberholzer J.; Salmon P.; Morel P.; Buhler L.; Trono D. Treatment of acetaminophen-induced acute liver failure in the mouse with conditionally immortalized human hepatocytes. J. Hepatol. 43: 1031–1037; 2005.

    Article  PubMed  CAS  Google Scholar 

  • Okamoto H.; Kimura M.; Watanabe N.; Ogihara M. Tumor necrosis factor (TNF) receptor-2-mediated DNA synthesis and proliferation in primary cultures of adult rat hepatocytes: The involvement of endogenous transforming growth factor-alpha. Eur. J. Pharmacol. 604: 12–19; 2009.

    Article  PubMed  CAS  Google Scholar 

  • Pfeifer A. M.; Cole K. E.; Smoot D. T.; Weston A.; Groopman J. D.; Shields P. G.; Vignaud J. M.; Juillerat M.; Lipsky M. M.; Trump B. F. et al. Simian virus 40 large tumor antigen-immortalized normal human liver epithelial cells express hepatocyte characteristics and metabolize chemical carcinogens. Proc. Natl. Acad. Sci. U. S. A. 90: 5123–5127; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Ray R. B.; Meyer K.; Ray R. Hepatitis C virus core protein promotes immortalization of primary human hepatocytes. Virology 271: 197–204; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Roberts E. A.; Letarte M.; Squire J.; Yang S. Characterization of human hepatocyte lines derived from normal liver tissue. Hepatology 19: 1390–1399; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Runge D.; Michalopoulos G. K.; Strom S. C.; Runge D. M. Recent advances in human hepatocyte culture systems. Biochem. Biophys. Res. Commun. 274: 1–3; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Sassa S.; Sugita O.; Galbraith R. A.; Kappas A. Drug metabolism by the human hepatoma cell, Hep G2. Biochem. Biophys. Res. Commun. 143: 52–57; 1987.

    Article  PubMed  CAS  Google Scholar 

  • Sing G. K.; Pace R.; Prior S.; Scott J. S.; Shield P.; Martin N.; Searle J.; Battersby C.; Powell L. W.; Cooksley W. G. Establishment of a cell line from a hepatocellular carcinoma from a patient with hemochromatosis. Hepatology 20: 74–81; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Smalley M.; Leiper K.; Tootle R.; McCloskey P.; O'Hare M. J.; Hodgson H. Immortalization of human hepatocytes by temperature-sensitive SV40 large-T antigen. In Vitro Cell. Dev. Biol. Anim. 37: 166–168; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Stevenson D.; Lin J. H.; Tong M. J.; Marshall G. J. Characteristics of a cell line (Tong/HCC) established from a human hepatocellular carcinoma. Hepatology 7: 1291–1295; 1987.

    Article  PubMed  CAS  Google Scholar 

  • Stosiek P.; Kasper M.; Karsten U. Expression of cytokeratin 19 during human liver organogenesis. Liver 10: 59–63; 1990.

    PubMed  CAS  Google Scholar 

  • Wang X.; Foster M.; Al-Dhalimy M.; Lagasse E.; Finegold M.; Grompe M. The origin and liver repopulating capacity of murine oval cells. Proc. Natl. Acad. Sci. U. S. A. 100(Suppl 1): 11881–11888; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Wege H.; Le H. T.; Chui M. S.; Liu L.; Wu J.; Giri R.; Malhi H.; Sappal B. S.; Kumaran V.; Gupta S.; Zern M. A. Telomerase reconstitution immortalizes human fetal hepatocytes without disrupting their differentiation potential. Gastroenterology 124: 432–444; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Wu J. C.; Merlino G.; Fausto N. Establishment and characterization of differentiated, nontransformed hepatocyte cell lines derived from mice transgenic for transforming growth factor alpha. Proc. Natl. Acad. Sci. U.S.A. 91: 674–678; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Yasuchika K.; Hirose T.; Fujii H.; Oe S.; Hasegawa K.; Fujikawa T.; Azuma H.; Yamaoka Y. Establishment of a highly efficient gene transfer system for mouse fetal hepatic progenitor cells. Hepatology 36: 1488–1497; 2002.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants for research from the Research Institute of Clinical Medicine, Chonbuk National University Hospital. The authors are grateful to Professor P.H. Hwang for helpful discussion, Dr. S.Y. Kim, Dr. L.M. Jung, Mrs. J. H. Koo, and Ms. S. J. Jung for the technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yeon Jun Jeong.

Additional information

Editor: T. Okamoto

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Figure 1

Immunofluoresence analysis showed no expression of K-19 and AFP in PMH08 cells. MCT3T-E1 was used as negative control and HepG2 (human liver cancer cell line) was used as positive control. (JPEG 22 kb)

High resolution image (TIFF 3803 kb)

Supplementary Figure 2

A Mice injected with the Hep3B cell line, photograph at 10 wk after cell line injection. B Mice injected with PMH08 cell line, photograph 28 wk after injection. C Hep3B illustrated by the black color colonies, D PMH08 cell line formed no colonies, E control without cells in soft agar culture. (JPEG 31 kb)

High resolution image (TIFF 5192 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Risal, P., Cho, B.H., Sylvester, K.G. et al. The establishment and characterization of immortal hepatocyte cell lines from a mouse liver injury model. In Vitro Cell.Dev.Biol.-Animal 47, 526–534 (2011). https://doi.org/10.1007/s11626-011-9445-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-011-9445-0

Keywords

Navigation