Characterization of flounder (Paralichthys olivaceus) FoxD3 and its function in regulating myogenic regulatory factors

  • Yuqing Zhang
  • Xungang Tan
  • Wei Sun
  • Peng Xu
  • Pei-Jun Zhang
  • Yongli Xu
Article

Abstract

As one member of winged helix domain transcription factors, FoxD3 plays an important role in the regulation of neural crest development and maintenance of mammalian stem cell lineages. A recent study showed that zebrafish FoxD3 is a downstream gene of Pax3 and can mediate the expression of Myf5. To further understand the function of FoxD3 in fish muscle development, we isolated the FoxD3 gene from flounder, and analyzed its expression pattern and function in regulating myogenic regulatory factors, MyoD and Myf5. In situ hybridization showed that flounder FoxD3 was firstly detected in the premigratory neural crest cells at 90% epiboly stage. The FoxD3 was expressed not only in neural crest cells but also in somite cells that will form muscle in the future. When flounder FoxD3 was over-expressed in zebrafish by microinjection, the expressions of zebrafish Myf5 and MyoD were both affected. It is possible that FoxD3 is involved in myogenesis by regulating the expression of Myf5 and MyoD. Also, over-expression of flounder FoxD3 in zebrafish inhibits the expression of zebrafish endogenic FoxD3.

Keywords

Flounder FoxD3 Muscle Over-expression In situ hybridization Myogenic regulatory factors 

References

  1. Buckingham M. Skeletal muscle formation in vertebrates. Curr. Opin. Genet. Dev. 11: 440–448; 2001.PubMedCrossRefGoogle Scholar
  2. Carlsson P.; Mahlapuu M. Forkhead transcription factors: key players in development and metabolism. Dev. Biol. 250: 1–23; 2002.PubMedCrossRefGoogle Scholar
  3. Dottori M.; Gross M. K.; Labosky P.; Goulding M. The winged-helix transcription factor Foxd3 suppresses interneuron differentiation and promotes neural crest cell fate. Development 128: 4127–4138; 2001.PubMedGoogle Scholar
  4. Du S. J.; Dienhart M. Gli2 mediation of hedgehog signals in slow muscle induction in zebrafish. Differentiation 67: 84–91; 2001.PubMedCrossRefGoogle Scholar
  5. Freyaldenhoven B. S.; Freyaldenhoven M. P.; Iacovoni J. S.; Vogt P. K. Avian winged helix proteins CWH-1, CWH-2 and CWH-3 repress transcription from Qin binding sites. Oncogene 15: 483–488; 1997.PubMedCrossRefGoogle Scholar
  6. Hanna L. A.; Foreman R. K.; Tarasenko I. A.; Kessler D. S.; Labosky P. A. Requirement for Foxd3 in maintaining pluripotent cells of the early mouse embryo. Genes Dev. 16: 2650–2661; 2002.PubMedCrossRefGoogle Scholar
  7. Hromas R.; Ye H.; Spinella M.; Dmitrovsky E.; Xu D.; Costa R. H. Genesis, a Winged Helix transcriptional repressor, has embryonic expression limited to the neural crest, and stimulates proliferation in vitro in a neural development model. Cell Tissue Res. 297: 371–382; 1999.PubMedCrossRefGoogle Scholar
  8. Imai K. S.; Satoh N.; Satou Y. An essential role of a FoxD gene in notochord induction in Ciona embryos. Development 129, 3441–3453; 2002.Google Scholar
  9. Katoh M. Human Fox gene family. Int. J. Oncol. 25(5): 1495–1500; 2004.PubMedGoogle Scholar
  10. Kelsh R. N.; Dutton K.; Medlin J.; Eisen J. S. Expression of zebrafish fkd6 in neural crest-derived glia. Mech. Dev. 93(1–2): 161–164; 2000.PubMedCrossRefGoogle Scholar
  11. Kos R.; Reedy M. V.; Johnson R. L.; Erickson C. A. The winged-helix transcription factor FoxD3 is important for establishing the neural crest lineage and repressing melanogenesis in avian embryos. Development 128: 1467–1479; 2001.PubMedGoogle Scholar
  12. Labosky P. A.; Kaestner K. H. The winged helix transcription factor Hfh2 is expressed in neural crest and spinal cord during mouse development. Mech. Dev. 76: 185–190; 1998.PubMedCrossRefGoogle Scholar
  13. Lee H.-C.; Huang H.-Y.; Lin Ch-Y; Chen Y.-H.; Tsai H.-J. Foxd3 mediates zebrafish myf5 expression during early somitogenesis. Dev. Biol. 290: 359–372; 2006.PubMedCrossRefGoogle Scholar
  14. Lef J.; Dege P.; Scheucher M.; Forsbach-Birk V.; Clement J. H.; Knochel W. A fork head related multigene family is transcribed in Xenopus laevis embryos. Int. J. Dev. Biol. 40: 245–253; 1996.PubMedGoogle Scholar
  15. Lehmann O. J.; Sowden J. C.; Carlsson P.; Jordan T.; Bhattacharya S. S. Fox’s in development and disease. Trends Genet. 19: 339–344; 2003.PubMedCrossRefGoogle Scholar
  16. Lister J. A.; Cooper C.; Nguyen K.; Modrell M.; Grant K.; Raible D. W. Zebrafish Foxd3 is required for development of a subset of neural crest derivatives. Dev. Biol. 290: 92–104; 2006.PubMedCrossRefGoogle Scholar
  17. Margaret B.; Frederic R. The role of Pax Genes in the development of tissues and organs: Pax3 and Pax7 regulate muscle progenitor cell functions. Annu. Rev. Cell Dev. Biol. 23: 645–673; 2007.CrossRefGoogle Scholar
  18. Odenthal J.; Nüsslein-Volhard C. Fork head domain genes in zebrafish. Dev. Genes Evol. 208: 245–258; 1998.PubMedCrossRefGoogle Scholar
  19. Pohl B. S.; Knochel W. Overexpression of the transcriptional repressor FoxD3 prevents neural crest formation in Xenopus embryos. Mech. Dev. 103: 93–106; 2001.PubMedCrossRefGoogle Scholar
  20. Pohl B. S.; Knochel W. Of fox and frogs: fox (fork head/winged helix) transcription factors in Xenopus development. Gene 344: 21–32; 2005.PubMedCrossRefGoogle Scholar
  21. Robert K.; Mark V. R.; Randy L. J.; Carol A. E. The winged-helix transcription factor FoxD3 is important for establishing the neural crest lineage and repressing melanogenesis in avian embryos. Development 128: 1467–1479; 2001.Google Scholar
  22. Sasai N.; Mizuseki K.; Sasai Y. Requirement of FoxD3-class signaling for neural crest determination in Xenopus. Development 128: 2525–2536; 2001.PubMedGoogle Scholar
  23. Steiner A. B.; Engleka M. J.; Lu Q.; Piwarzyk E. C.; Yaklichkin S.; Lefebvre J. L.; Walters J. W.; Pineda-Salgado L.; Labosky P. A.; Kessler D. S. FoxD3 regulation of nodal in the Spemann organizer is essential for Xenopus dorsal mesoderm development. Development 133(24): 4827–4838; 2006.PubMedCrossRefGoogle Scholar
  24. Sutton J.; Costa R.; Klug M.; Field L.; Xu D.; Largaespada D. A.; Fletcher C. F.; Jenkins N. A.; Copeland N. G.; Klemsz M.; Hromas R. Genesis, a Winged Helix transcriptional repressor with expression restricted to embryonic stem cells. J. Biol. Chem. 271(38): 23126–23133; 1996.PubMedCrossRefGoogle Scholar
  25. Tan X.; Zhang Y.; Zhang P.-J.; Xu P.; Xu Y. Molecular structure and expression patterns of flounder (Paralichthys olivaceus) Myf-5, a myogenic regulatory factor. Comp. Biochem. Physiol. Part B 145: 204–213; 2006.CrossRefGoogle Scholar
  26. Tompers D. M.; Foremanl R. K.; Wang Q.; Kumanova M.; Labosky P. A. Foxd3 is required in the trophoblast progenitor cell lineage of the mouse embryo. Dev. Biol. 285(1): 126–137; 2005.PubMedCrossRefGoogle Scholar
  27. Weigel D.; Jürgens G.; Küttner F.; Seifert E.; Jäckle H. The homeotic gene fork head encodes a nuclear protein and is expressed in the terminal regions of the Drosophila embryo. Cell 57: 645–658; 1989.PubMedCrossRefGoogle Scholar
  28. Xu D.; Yoder M.; Sutton J.; Hromas R. Forced expression of Genesis, a winged helix transcriptional repressor isolated from embryonic stem cells, blocks granulocytic differentiation of 32D myeloid cells. Leukemia 12: 207–212; 1998.PubMedCrossRefGoogle Scholar
  29. Yamagata M.; Noda M. The winged-helix transcription factor CWH-3 is expressed in developing neural crest cells. Neurosci. Lett. 249: 33–36; 1998.PubMedCrossRefGoogle Scholar
  30. Yu J. K.; Holland L. Z.; Holland N. D. An amphioxus nodal gene (AmphiNodal) with early symmetrical expression in the organizer and mesoderm and later asymmetrical expression associated with left-right axis formation. Evol. Dev. 4, 418–425; 2002a.Google Scholar
  31. Yu J. K.; Holland N. D.; Holland L. Z. An amphioxus winged helix/forkhead gene, AmphiFoxD: insights into vertebrate neural crest evolution. Dev. Dyn. 225, 289–297; 2002b.Google Scholar
  32. Zhang Y.; Tan X.; Zhang P. J.; Xu Y. Characterization of muscle regulatory gene, MyoD, from flounder (Paralichthys olivaceus) and analysis of its expression patterns during embryogenesis. Mar. Biotechnol. (NY) 8: 139–148; 2006.CrossRefGoogle Scholar

Copyright information

© The Society for In Vitro Biology 2011

Authors and Affiliations

  • Yuqing Zhang
    • 1
    • 2
  • Xungang Tan
    • 1
  • Wei Sun
    • 1
    • 2
  • Peng Xu
    • 1
    • 2
  • Pei-Jun Zhang
    • 1
  • Yongli Xu
    • 1
  1. 1.Key Laboratory of Experimental Marine BiologyInstitute of Oceanology, Chinese Academy of SciencesQingdaoPeople’s Republic of China
  2. 2.Graduate University of the Chinese Academy of SciencesBeijingPeople’s Republic of China

Personalised recommendations