Skip to main content
Log in

Human amniotic epithelial cells maintain mouse spermatogonial stem cells in an undifferentiated state due to high leukemia inhibitor factor (LIF) expression

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

Spermatogonial stem cells (SSCs), like other stem cells, have unique properties: prolonged proliferation, self-renewal, generation of differentiated progeny, and maintenance of developmental potential. Long-term cultivation of normal SSCs into stable cell lines, and maintaining SSCs in an undifferentiated state capable of self-renewal, is a major challenge. Here, we compare the effect of leukemia inhibitory factor (LIF) expression on mouse SSCs isolated from testicular tissue cultured under different conditions. We found that human amniotic epithelial cells (hAECs) with high LIF expression (LIFhigh) feeder cells allowed mouse SSCs to maintain a high level of AP activity when cultured long term. Expression of some important stem cell markers was higher in mouse SSCs cultured on hAECs (LIFhigh) compared to those cultured on hAECs (LIFlow). Taken together, these results suggest that LIF expression could be a crucial component for feeder cells to maintain mouse SSCs in an undifferentiated, proliferative state capable of self-renewal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.

Similar content being viewed by others

References

  • Adams G. B.; Scadden D. T. The hematopoietic stem cell in its place. Nat Immunol 7: 333–337; 2006.

    Article  PubMed  CAS  Google Scholar 

  • Aghajanova L. Leukemia inhibitory factor and human embryo implantation. Ann NY Acad Sci 1034: 176–183; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Akle C. A.; Adinolfi M.; Welsh K. I.; Leibowitz S.; McColl I. Immunogenicity of human amniotic epithelial cells after transplantation into volunteers. Lancet 2: 1003–1005; 1981.

    Article  PubMed  CAS  Google Scholar 

  • Bauer S.; Patterson P. H. Leukemia inhibitory factor promotes neural stem cell self-renewal in the adult brain. J Neurosci 26: 12089–12099; 2006.

    Article  PubMed  CAS  Google Scholar 

  • Bonaguidi M. A.; McGuire T.; Hu M.; Kan L.; Samanta J.; Kessler J. A. LIF and BMP signaling generate separate and discrete types of GFAP-expressing cells. Development 132: 5503–5514; 2005.

    Article  PubMed  CAS  Google Scholar 

  • Bracken A. P.; Pasini D.; Capra M.; Prosperini E.; Colli E.; Helin K. EZH2 is downstream of the pRB-E2F pathway, essential for proliferation and amplified in cancer. EMBO J 22: 5323–5335; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Brown G. S.; Brown M. A.; Hilton D.; Gough N. M.; Sleigh M. J. Inhibition of differentiation in a murine F9 embryonal carcinoma cell subline by leukemia inhibitory factor (LIF). Growth Factors 7: 41–52; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Buaas F. W.; Kirsh A. L.; Sharma M.; McLean D. J.; Morris J. L.; Griswold M. D.; de Rooij D. G.; Braun R. E. Plzf is required in adult male germ cells for stem cell self-renewal. Nat Genet 36: 647–652; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Chen B.; Wang Y. B.; Zhang Z. L.; Xia W. L.; Wang H. X.; Xiang Z. Q.; Hu K.; Han Y. F.; Wang Y. X.; Huang Y. R.; Wang Z. Xeno-free culture of human spermatogonial stem cells supported by human embryonic stem cell-derived fibroblast-like cells. Asian J Androl 11: 557–565; 2009.

    Article  PubMed  Google Scholar 

  • Conrad S.; Renninger M.; Hennenlotter J.; Wiesner T.; Just L.; Bonin M.; Aicher W.; Buhring H. J.; Mattheus U.; Mack A. et al. Generation of pluripotent stem cells from adult human testis. Nature 456: 344–349; 2008.

    Article  PubMed  CAS  Google Scholar 

  • Costoya J. A.; Hobbs R. M.; Barna M.; Cattoretti G.; Manova K.; Sukhwani M.; Orwig K. E.; Wolgemuth D. J.; Pandolfi P. P. Essential role of Plzf in maintenance of spermatogonial stem cells. Nat Genet 36: 653–659; 2004.

    Article  PubMed  CAS  Google Scholar 

  • de Rooij D. G. Proliferation and differentiation of spermatogonial stem cells. Reproduction 121: 347–354; 2001.

    Article  PubMed  Google Scholar 

  • Dorval-Coiffec I.; Delcros J. G.; Hakovirta H.; Toppari J.; Jegou B.; Piquet-Pellorce C. Identification of the leukemia inhibitory factor cell targets within the rat testis. Biol Reprod 72: 602–611; 2005.

    Article  PubMed  CAS  Google Scholar 

  • Dym M.; He Z.; Jiang J.; Pant D.; Kokkinaki M. Spermatogonial stem cells: unlimited potential. Reprod Fertil Dev 21: 15–21; 2009a.

    Article  PubMed  CAS  Google Scholar 

  • Dym M.; Kokkinaki M.; He Z. Spermatogonial stem cells: mouse and human comparisons. Birth Defects Res C Embryo Today 87: 27–34; 2009b.

    Article  PubMed  CAS  Google Scholar 

  • Gearing D. P.; Gough N. M.; King J. A.; Hilton D. J.; Nicola N. A.; Simpson R. J.; Nice E. C.; Kelso A.; Metcalf D. Molecular cloning and expression of cDNA encoding a murine myeloid leukaemia inhibitory factor (LIF). EMBO J 6: 3995–4002; 1987.

    PubMed  CAS  Google Scholar 

  • Giuili G.; Tomljenovic A.; Labrecque N.; Oulad-Abdelghani M.; Rassoulzadegan M.; Cuzin F. Murine spermatogonial stem cells: targeted transgene expression and purification in an active state. EMBO Rep 3: 753–759; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Gregg C.; Weiss S. CNTF/LIF/gp130 receptor complex signaling maintains a VZ precursor differentiation gradient in the developing ventral forebrain. Development 132: 565–578; 2005.

    Article  PubMed  CAS  Google Scholar 

  • Guan K.; Nayernia K.; Maier L. S.; Wagner S.; Dressel R.; Lee J. H.; Nolte J.; Wolf F.; Li M.; Engel W.; Hasenfuss G. Pluripotency of spermatogonial stem cells from adult mouse testis. Nature 440: 1199–1203; 2006.

    Article  PubMed  CAS  Google Scholar 

  • He Z.; Li J. J.; Zhen C. H.; Feng L. Y.; Ding X. Y. Effect of leukemia inhibitory factor on embryonic stem cell differentiation: implications for supporting neuronal differentiation. Acta Pharmacol Sin 27: 80–90; 2006.

    Article  PubMed  CAS  Google Scholar 

  • Hermann B. P.; Sukhwani M.; Simorangkir D. R.; Chu T.; Plant T. M.; Orwig K. E. Molecular dissection of the male germ cell lineage identifies putative spermatogonial stem cells in rhesus macaques. Hum Reprod 24: 1704–1716; 2009.

    Article  PubMed  CAS  Google Scholar 

  • Hilton D. J. LIF: lots of interesting functions. Trends Biochem Sci 17: 72–76; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Hofmann M. C.; Braydich-Stolle L.; Dym M. Isolation of male germ-line stem cells; influence of GDNF. Dev Biol 279: 114–124; 2005.

    Article  PubMed  CAS  Google Scholar 

  • Izadyar F.; Pau F.; Marh J.; Slepko N.; Wang T.; Gonzalez R.; Ramos T.; Howerton K.; Sayre C.; Silva F. Generation of multipotent cell lines from a distinct population of male germ line stem cells. Reproduction 135: 771–784; 2008.

    Article  PubMed  CAS  Google Scholar 

  • Kanatsu-Shinohara M.; Inoue K.; Lee J.; Yoshimoto M.; Ogonuki N.; Miki H.; Baba S.; Kato T.; Kazuki Y.; Toyokuni S. et al. Generation of pluripotent stem cells from neonatal mouse testis. Cell 119: 1001–1012; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Koizumi N. J.; Inatomi T. J.; Sotozono C. J.; Fullwood N. J.; Quantock A. J.; Kinoshita S. Growth factor mRNA and protein in preserved human amniotic membrane. Curr Eye Res 20: 173–177; 2000.

    PubMed  CAS  Google Scholar 

  • Kubota H.; Avarbock M. R.; Brinster R. L. Spermatogonial stem cells share some, but not all, phenotypic and functional characteristics with other stem cells. Proc Natl Acad Sci USA 100: 6487–6492; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Kubota H.; Avarbock M. R.; Brinster R. L. Growth factors essential for self-renewal and expansion of mouse spermatogonial stem cells. Proc Natl Acad Sci USA 101: 16489–16494; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Lai D.; Cheng W.; Liu T.; Jiang L.; Huang Q. Use of human amnion epithelial cells as a feeder layer to support undifferentiated growth of mouse embryonic stem cells. Cloning Stem Cells 11: 331–340; 2009.

    Article  PubMed  CAS  Google Scholar 

  • Li W. B.; Feng J.; Geng S. M.; Zhang P. Y.; Yan X. N.; Hu G.; Zhang C. Q.; Shi B. J. Induction of apoptosis by Hax-1 siRNA in melanoma cells. Cell Biol Int 33: 548–554; 2009.

    Article  PubMed  CAS  Google Scholar 

  • Liu T.; Wu J.; Huang Q.; Hou Y.; Jiang Z.; Zang S.; Guo L. Human amniotic epithelial cells ameliorate behavioral dysfunction and reduce infarct size in the rat middle cerebral artery occlusion model. Shock 29: 603–611; 2008.

    Article  PubMed  Google Scholar 

  • Lo K. C.; Brugh 3rd V. M.; Parker M.; Lamb D. J. Isolation and enrichment of murine spermatogonial stem cells using rhodamine 123 mitochondrial dye. Biol Reprod 72: 767–771; 2005.

    Article  PubMed  CAS  Google Scholar 

  • Lucas B.; Fields C.; Hofmann M. C. Signaling pathways in spermatogonial stem cells and their disruption by toxicants. Birth Defects Res C Embryo Today 87: 35–42; 2009.

    Article  PubMed  CAS  Google Scholar 

  • Maki C. B.; Pacchiarotti J.; Ramos T.; Pascual M.; Pham J.; Kinjo J.; Anorve S.; Izadyar F. Phenotypic and molecular characterization of spermatogonial stem cells in adult primate testes. Hum Reprod 24: 1480–1491; 2009.

    Article  PubMed  CAS  Google Scholar 

  • Meng X.; Lindahl M.; Hyvonen M. E.; Parvinen M.; de Rooij D. G.; Hess M. W.; Raatikainen-Ahokas A.; Sainio K.; Rauvala H.; Lakso M. et al. Regulation of cell fate decision of undifferentiated spermatogonia by GDNF. Science 287: 1489–1493; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Metcalf D. Leukemia inhibitory factor—a puzzling polyfunctional regulator. Growth Factors 7: 169–173; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Miki T.; Lehmann T.; Cai H.; Stolz D. B.; Strom S. C. Stem cell characteristics of amniotic epithelial cells. Stem Cells 23: 1549–1559; 2005.

    Article  PubMed  CAS  Google Scholar 

  • Miyabayashi T.; Teo J. L.; Yamamoto M.; McMillan M.; Nguyen C.; Kahn M. Wnt/beta-catenin/CBP signaling maintains long-term murine embryonic stem cell pluripotency. Proc Natl Acad Sci USA 104: 5668–5673; 2007.

    Article  PubMed  CAS  Google Scholar 

  • Ohbo K.; Yoshida S.; Ohmura M.; Ohneda O.; Ogawa T.; Tsuchiya H.; Kuwana T.; Kehler J.; Abe K.; Scholer H. R.; Suda T. Identification and characterization of stem cells in prepubertal spermatogenesis in mice small star, filled. Dev Biol 258: 209–225; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Ohmura M.; Yoshida S.; Ide Y.; Nagamatsu G.; Suda T.; Ohbo K. Spatial analysis of germ stem cell development in Oct-4/EGFP transgenic mice. Arch Histol Cytol 67: 285–296; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Pitman M.; Emery B.; Binder M.; Wang S.; Butzkueven H.; Kilpatrick T. J. LIF receptor signaling modulates neural stem cell renewal. Mol Cell Neurosci 27: 255–266; 2004.

    PubMed  CAS  Google Scholar 

  • Sakuragawa N.; Tohyama J.; Yamamoto H. Immunostaining of human amniotic epithelial cells: possible use as a transgene carrier in gene therapy for inborn errors of metabolism. Cell Transplant 4: 343–346; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Schaller J.; Glander H. J.; Dethloff J. Evidence of beta 1 integrins and fibronectin on spermatogenic cells in human testis. Hum Reprod 8: 1873–1878; 1993.

    PubMed  CAS  Google Scholar 

  • Seandel M.; James D.; Shmelkov S. V.; Falciatori I.; Kim J.; Chavala S.; Scherr D. S.; Zhang F.; Torres R.; Gale N. W. et al. Generation of functional multipotent adult stem cells from GPR125+ germline progenitors. Nature 449: 346–350; 2007.

    Article  PubMed  CAS  Google Scholar 

  • Shimazaki T.; Shingo T.; Weiss S. The ciliary neurotrophic factor/leukemia inhibitory factor/gp130 receptor complex operates in the maintenance of mammalian forebrain neural stem cells. J Neurosci 21: 7642–7653; 2001.

    PubMed  CAS  Google Scholar 

  • Shinohara T.; Avarbock M. R.; Brinster R. L. beta1- and alpha6-integrin are surface markers on mouse spermatogonial stem cells. Proc Natl Acad Sci USA 96: 5504–5509; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Shinohara T.; Brinster R. L. Enrichment and transplantation of spermatogonial stem cells. Int J Androl 23(Suppl 2): 89–91; 2000.

    Article  PubMed  Google Scholar 

  • Stewart C. L. Leukaemia inhibitory factor and the regulation of pre-implantation development of the mammalian embryo. Mol Reprod Dev 39: 233–238; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Wright L. S.; Li J.; Caldwell M. A.; Wallace K.; Johnson J. A.; Svendsen C. N. Gene expression in human neural stem cells: effects of leukemia inhibitory factor. J Neurochem 86: 179–195; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Wu Z.; Falciatori I.; Molyneux L. A.; Richardson T. E.; Chapman K. M.; Hamra F. K. Spermatogonial culture medium: an effective and efficient nutrient mixture for culturing rat spermatogonial stem cells. Biol Reprod 81: 77–86; 2009.

    Article  PubMed  CAS  Google Scholar 

  • Xie T.; Spradling A. C. A niche maintaining germ line stem cells in the Drosophila ovary. Science 290: 328–330; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Ying Q. L.; Stavridis M.; Griffiths D.; Li M.; Smith A. Conversion of embryonic stem cells into neuroectodermal precursors in adherent monoculture. Nat Biotechnol 21: 183–186; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Zaehres H.; Lensch M. W.; Daheron L.; Stewart S. A.; Itskovitz-Eldor J.; Daley G. Q. High-efficiency RNA interference in human embryonic stem cells. Stem Cells 23: 299–305; 2005.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Shanghai Municipal Health Bureau Fund for Young Scholars (no. 2008Y002) and Medicine-Engineering Unite Fund for Shanghai Jiaotong University (no. YG2009MS47), Shanghai Committee Medical Science Foundation of China (no.10411967100), and Natural Science Foundation of School of Medicine of Shanghai Jiaotong University (no. YZ1046) to Te Liu. And this work was supported by grants from the National High Technology Research and Development Program of China (863 Program) (no. 2008AA101001) and Science and Technology Department of Shanghai Research Fund (no. 07DZ19063-2) to Zhixue Liu.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhixue Liu or Weiwei Cheng.

Additional information

Editor: T. Okamoto

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, T., Guo, L., Liu, Z. et al. Human amniotic epithelial cells maintain mouse spermatogonial stem cells in an undifferentiated state due to high leukemia inhibitor factor (LIF) expression. In Vitro Cell.Dev.Biol.-Animal 47, 318–326 (2011). https://doi.org/10.1007/s11626-011-9396-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-011-9396-5

Keywords

Navigation