Skip to main content

Advertisement

Log in

Establishment of heparan sulphate deficient primary endothelial cells from EXT-1flox/flox mouse lungs and sprouting aortas

  • Report
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

Angiogenesis is a hallmark of expanding tissue e.g. during embryogenesis and wound healing in physiology as well as in diseases such as cancer and atherosclerosis. Key steps of the angiogenic process involve growth factor-mediated stimulation of endothelial cell sprouting and tube formation. Heparan sulphate proteoglycans (HSPGs) have been implicated as important co-receptors of several pro-angiogenic proteins. The importance of HSPGs in physiology was underscored by the finding that knockout of the gene encoding HS polymerase, EXT-1, resulted in early embryonic lethality. Here, we describe the establishment of HS-deficient endothelial cells from sprouting aortas as well as from the lungs of EXT-1flox/flox mice. Recombination of the loxP-flanked EXT-1 locus by Cre-expressing adenovirus was demonstrated at the mRNA level. Moreover, depletion of HS polysaccharides was verified by flow cytometry and fluorescence microscopy methodology using phage display-derived anti-HS antibodies. In summary, we provide a genetic model to unravel the functional role of HSPGs specifically in primary endothelial cells during early steps of angiogenesis. Our studies are applicable to most loxP-based transgenic mouse strains, and may thus be of general importance in the angiogenesis field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.

Similar content being viewed by others

References

  • Abramsson A.; Kurup S.; Busse M.; Yamada S.; Lindblom P.; Schallmeiner E.; Stenzel D.; Sauvaget D.; Ledin J.; Ringvall M.; Landegren U.; Kjellén L.; Bondjers G.; Li J. P.; Lindahl U.; Spillmann D.; Betsholtz C.; Gerhardt H. Defective N-sulfation of heparan sulphate proteoglycans limits PDGF-BB binding and pericyte recruitment in vascular development. Genes Dev 21: 316–331; 2007.

    Article  CAS  PubMed  Google Scholar 

  • Armstrong L. C.; Björkblom B.; Hankenson K. D.; Siadak A. W.; Stiles C. E.; Bornstein P. Thrombospondin 2 inhibits microvascular endothelial cell proliferation by a caspase-independent mechanism. Mol Biol Cell 13: 1893–1905; 2002.

    Article  CAS  PubMed  Google Scholar 

  • Belting M. Heparan sulfate proteoglycan as a plasma membrane carrier. Trends Biochem Sci 28: 145–51; 2003.

    Article  CAS  PubMed  Google Scholar 

  • Bishop J. R.; Schuksz M.; Esko J. D. Heparan sulphate proteoglycans fine-tune mammalian physiology. Nature 446: 1030–1037; 2007.

    Article  CAS  PubMed  Google Scholar 

  • Carmeliet P.; Jain R. K. Angiogenesis in cancer and other diseases. Nature 407: 249–257; 2000.

    Article  CAS  PubMed  Google Scholar 

  • Dennissens M. A.; Jenniskens G. J.; Pieffers M.; Versteeg E. M.; Petitou M.; Veerkamp J. H.; van Kuppevelt T. H. Large, tissue-regulated domain diversity of heparan sulphates demonstrated by phage display antibodies. J Biol Chem 277: 10982–10986; 2002.

    Article  Google Scholar 

  • Esko J. D.; Selleck S. B. Order out of chaos: assembly of ligand binding sites in heparan sulphate. Annu Rev Biochem 71: 435–471; 2002.

    Article  CAS  PubMed  Google Scholar 

  • Feyzi E.; Lustig F.; Fager G.; Spillmann D.; Lindahl U.; Salmivirta M. Characterization of heparin and heparan sulphate domains binding to the long splice variant of platelet-derived growth factor A chain. J Biol Chem 272: 5518–5524; 1997.

    Article  CAS  PubMed  Google Scholar 

  • Folkman J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1: 27–31; 1995.

    Article  CAS  PubMed  Google Scholar 

  • Forsten-Williams K.; Chua C. C.; Nugent M. A. The kinetics of FGF-2 binding to heparan sulphate proteoglycans and MAP kinase signaling. J Theor Biol 233: 483–499; 2005.

    Article  CAS  PubMed  Google Scholar 

  • Gitay-Goren H.; Soker S.; Vlodavsky I.; Neufeld G. The binding of vascular endothelial growth factor to its receptors is dependent on cell surface-associated heparin- like molecules. J Biol Chem 267: 6093–6098; 1992.

    CAS  PubMed  Google Scholar 

  • Inatani M.; Irie F.; Plump A. S.; Tessier-Lavigne M.; Yamaguchi Y. Mammalian brain morphogenesis and midline axon guidance require heparan sulphate. Science 302: 1044–1046; 2003.

    Article  CAS  PubMed  Google Scholar 

  • Lin X.; Wei G.; Shi Z.; Dryer L.; Esko J. D.; Wells D. E.; Matzuk M. M. Disruption of gastrulation and heparan sulphate biosynthesis in EXT1-deficient mice. Dev Biol 224: 299–311; 2000.

    Article  CAS  PubMed  Google Scholar 

  • Lindblom P.; Gerhardt H.; Liebner S.; Abramsson A.; Enge M.; Hellstrom M.; Backstrom G.; Fredriksson S.; Landegren U.; Nystrom H. C.; Bergstrom G.; Dejana E.; Ostman A.; Lindahl P.; Betsholtz C. Endothelial PDGF-B retention is required for proper investment of pericytes in the microvessel wall. Genes Dev 17: 1835–1840; 2003.

    Article  CAS  PubMed  Google Scholar 

  • Lundin L.; Larsson H.; Kreuger J.; Kanda S.; Lindahl U.; Salmivirta M.; Claesson-Welsh L. Selectively desulphated heparin inhibits fibroblast growth factor-induced mitogenicity and angiogenesis. J Biol Chem 275: 24653–24660; 2000.

    Article  CAS  PubMed  Google Scholar 

  • Marelli-Berg F. M.; Peek E.; Lidington E. A.; Stauss H. J.; Lechler R. I. Isolation of endothelial cells from murine tissue. J Immunol Methods 244: 205–215; 2000.

    Article  CAS  PubMed  Google Scholar 

  • McCormick C.; Duncan G.; Goutsos K. T.; Tufaro F. The putative tumor suppressors EXT1 and EXT2 form a stable complex that accumulates in the Golgi apparatus and catalyzes the synthesis of heparan sulphate. Proc Natl Acad Sci USA 97: 668–673; 2000.

    Article  CAS  PubMed  Google Scholar 

  • Rapraeger A. C.; Krufka A.; Olwin B. B. Requirement of heparan sulphate for bFGF-mediated fibroblast growth and myoblast differentiation. Science 252: 1705–1708; 1991.

    Article  CAS  PubMed  Google Scholar 

  • Robinson C. J.; Mulloy B.; Gallagher J. T.; Stringer S. E. VEGF165-binding sites within heparan sulphate encompass two highly sulphated domains and can be liberated by K5 lyase. J Biol Chem 281: 1731–1740; 2006.

    Article  CAS  PubMed  Google Scholar 

  • Ruhrberg C.; Gerhardt H.; Golding M.; Watson R.; Ioannidou S.; Fujisawa H.; Betsholtz C.; Shima D. T. Spatially restricted patterning cues provided by heparin-binding VEGF-A control blood vessel branching morphogenesis. Genes Dev 16: 2684–2698; 2002.

    Article  CAS  PubMed  Google Scholar 

  • Spivak-Kroizman T.; Lemmon M. A.; Dikic I.; Ladbury J. E.; Pinchasi D.; Huang J.; Jaye M.; Crumley G.; Schlessinger J.; Lax I. Heparin-induced oligomerization of FGF molecules is responsible for FGF receptor dimerization, activation, and cell proliferation. Cell 79: 1015–1024; 1994.

    Article  CAS  PubMed  Google Scholar 

  • Vlodavsky I.; Korner G.; Ishai-Michaeli R.; Bashkin P.; Bar-Shavit R.; Fuks Z. Extracellular matrix-resident growth factors and enzymes: possible involvement in tumor metastasis and angiogenesis. Cancer Metastasis Rev 9: 203–226; 1990.

    Article  CAS  PubMed  Google Scholar 

  • Voyta J. C.; Via D. P.; Butterfield C. E.; Zetter B. R. Identification and isolation of endothelial cells based on their inCreased uptake of acetylated-low density lipoprotein. J Cell Biol 99: 2034–2040; 1984.

    Article  CAS  PubMed  Google Scholar 

  • Welch J. E.; Bengtson P.; Svensson K.; Wittrup A.; Jenniskens G. J.; Ten Dam G. B.; Van Kuppevelt T. H.; Belting M. Single chain fragment anti-heparan sulphate antibody targets the polyamine transport system and attenuates polyamine-dependent cell proliferation. Int J Oncol 32: 749–756; 2008.

    CAS  PubMed  Google Scholar 

  • Wittrup A.; Zhang S. H.; ten Dam G. B.; van Kuppevelt T. H.; Bengtson P.; Johansson M.; Welch J.; Mörgelin M.; Belting M. ScFv antibody-induced translocation of cell-surface heparan sulfate proteoglycan to endocytic vesicles: evidence for heparan sulfate epitope specificity and role of both syndecan and glypican. J Biol Chem 284: 32959–67; 2009.

    Article  CAS  PubMed  Google Scholar 

  • Yayon A.; Klagsbrun M.; Esko J. D.; Leder P.; Ornitz D. M. Cell surface, heparin-like molecules are required for binding of basic fibroblast growth factor to its high affinity receptor. Cell 64: 841–848; 1991.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The Swedish Cancer Fund; The Swedish Research Council; The Crafoordska Foundation; The Gunnar Nilsson Cancer Foundation; The Swedish Society of Medicine, and the Lund University Hospital/Region Skåne (ALF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mattias Belting.

Additional information

Editor: J. Denry Sato

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kucharzewska, P., Welch, J.E., Birgersson, J. et al. Establishment of heparan sulphate deficient primary endothelial cells from EXT-1flox/flox mouse lungs and sprouting aortas. In Vitro Cell.Dev.Biol.-Animal 46, 577–584 (2010). https://doi.org/10.1007/s11626-010-9313-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-010-9313-3

Keywords

Navigation