Skip to main content
Log in

Parasiticidal activity of human α-defensin-5 against Toxoplasma gondii

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

Human defensins play a fundamental role in the initiation of innate immune responses to some microbial pathogens. In this paper, we show that human α-defensin-5 displays a parasiticidal role against Toxoplasma gondii, the causative agent of toxoplasmosis. Exposure of the tachyzoite form of T. gondii to defensin induced aggregation and significantly reduced parasite viability in a concentration-dependent peptide. Pre-incubation of tachyzoites with human α-defensin-5 followed by exposure to a mouse embryonal cell line (NIH/3T3) significantly reduced T. gondii infection in these cells. Thus, human α-defensin-5 is an innate immune molecule that causes severe toxocity to T. gondii and plays an important role in reducing cellular infection. This is the first report showing that human α-defensin-5 causes aggregation, leading to Toxoplasma destruction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.

Similar content being viewed by others

References

  • Aley S. B.; Zimmerman M.; Hetsko M.; Selsted M. E.; Gillin F. D. Killing of Giardia lamblia by cryptins and cationic neutrophil peptides. Infect. Immun. 62: 5397–5403; 1994.

    CAS  PubMed  Google Scholar 

  • Ayabe T.; Satchell D. P.; Wilson C. L.; Parks W. C.; Selsted M. E.; Ouellette A. J. Secretion of microbicidal alpha-defensins by intestinal Paneth cells in response to bacteria. Nat. Immunol. 1: 113–118; 2000.

    Article  CAS  PubMed  Google Scholar 

  • Boman H. G. Peptide antibodies and their role in innate immunity. Annu. Rev. Immunol. 13: 61–92; 1995.

    Article  CAS  PubMed  Google Scholar 

  • Brogden K. A. Antimicrobial peptides: Pore formers or metabolic inhibitors in bacteria? Nat. Rev. Microbiol. 3: 238–250; 2005.

    Article  CAS  PubMed  Google Scholar 

  • Brown K. L.; Hancock R. E. Cationic host defense (antimicrobial) peptides. Curr. Opin. Immunol. 18: 24–30; 2006.

    Article  CAS  PubMed  Google Scholar 

  • Chen H.; Xu Z.; Peng L.; Fang X.; Yin X.; Xu N.; Cen P. Recent advances in the research and development of human defensins. Peptides 27: 931–940; 2006.

    Article  CAS  PubMed  Google Scholar 

  • Duits L. A.; Ravensbergen B.; Rademaker M.; Hiemstra P. S.; Nibbering P. H. Expression of beta-defensin 1 and 2 mRNA by human monocytes, macrophages and dendritic cells. Immunology 106: 517–525; 2002.

    Article  CAS  PubMed  Google Scholar 

  • Ganz T. Defensins: Antimicrobial peptides of innate immunity. Nat. Rev. Immunol. 3: 710–720; 2003.

    Article  CAS  PubMed  Google Scholar 

  • Hancock R. E.; Sahl H. G. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat. Biotechnol. 24: 1551–1557; 2006.

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann J. A.; Kafatos F. C.; Janeway C. A.; Ezekowitz R. A. Phylogenetic perspectives in innate immunity. Science 284: 1313–1318; 1999.

    Article  CAS  PubMed  Google Scholar 

  • Huang L. C.; Redfern R. L.; Narayanan S.; Reins R. Y.; McDermott A. M. In vitro activity of human beta-defensin 2 against Pseudomonas aeruginosa in the presence of tear fluid. Antimicrob. Agents Chemother. 51: 3853–3860; 2007.

    Article  CAS  PubMed  Google Scholar 

  • Ihi T.; Nakazato M.; Mukae H.; Matsukura S. Elevated concentrations of human neutrophil peptides in plasma, blood, and body fluids from patients with infections. Clin. Infect. Dis. 25: 1134–1140; 1997.

    Article  CAS  PubMed  Google Scholar 

  • Jones D. E.; Bevins C. L. Paneth cells of the human small intestine express an antimicrobial peptide gene. J. Biol. Chem. 267: 23216–23225; 1992.

    CAS  PubMed  Google Scholar 

  • Lai Y.; Gallo R. L. AMPed up immunity: How antimicrobial peptides have multiple roles in immune defense. Trends Immunol. 30: 131–141; 2009.

    Article  CAS  PubMed  Google Scholar 

  • Lehrer R. I.; Ganz T. Antimicrobial peptides in mammalian and insect host defense. Curr. Opin. Immunol. 11: 23–27; 1999.

    Article  CAS  PubMed  Google Scholar 

  • Liévin-Le Moal V.; Servin A. L. The front line of enteric host defense against unwelcome intrusion of harmful microorganisms: Mucins, antimicrobial peptides, and microbiota. Clin. Microbiol. Rev. 19: 315–337; 2006.

    Article  PubMed  Google Scholar 

  • McGwire B. S.; Olson C. L.; Tack B. F.; Engman D. M. Killing of African trypanosomes by antimicrobial peptides. J. Infect. Dis. 188: 146–152; 2003.

    Article  PubMed  Google Scholar 

  • Morrison G.; Morrison G.; Kilanowski F.; Davidson D.; Dorin J. Characterization of the mouse beta defensins 1, Defb1, mutant mouse model. Infect. Immun. 70: 3053–3060; 2002.

    Article  CAS  PubMed  Google Scholar 

  • Moser C.; Weiner D. J.; Lysenko E.; Bals R.; Weiser J. N.; Wilson J. M. beta-Defensin 1 contributes to pulmonary innate immunity in mice. Infect. Immun. 70: 3068–3072; 2002.

    Article  CAS  PubMed  Google Scholar 

  • Panyutich A. V.; Panyutich E. A.; Krapivin V. A.; Baturevich E. A.; Ganz T. Plasma defensins concentrations are elevated in patients with septicemia or bacterial meningitis. J. Lab. Clin. Med. 122: 202–207; 1993.

    CAS  PubMed  Google Scholar 

  • Powers J. P.; Hancock R. E. The relationship between peptide structure and antibacterial activity. Peptides 24: 1681–1691; 2003.

    Article  CAS  PubMed  Google Scholar 

  • Salzman N. H.; Ghosh D.; Huttner K. M.; Paterson Y.; Bevins C. L. Protection against enteric salmonellosis in transgenic mice expressing a human intestinal defensin. Nature 422: 522–526; 2003.

    Article  CAS  PubMed  Google Scholar 

  • Striepen B.; He C. Y.; Matrajt M.; Soldati D.; Roos D. S. Expression, selection, and organellar targeting of the green fluorescent protein in Toxoplasma gondii. Mol. Biochem. Parasitol. 1: 325–338; 1998.

    Article  Google Scholar 

  • Wilson C. L.; Ouellette A. J.; Satchell D. P.; Ayabe T.; López-Boado Y. S.; Stratman J. L.; Hultgren S. J.; Matrisian L. M.; Parks W. C. Regulation of intestinal alpha-defensin activation by the metalloproteinase matrilysin in innate host defense. Science 286: 113–117; 1999.

    Article  CAS  PubMed  Google Scholar 

  • Wimley W. C.; Selsted M. E.; White S. H. Interactions between human defensins and lipid bilayers: Evidence for formation of multimeric pores. Protein Sci. 3: 1362–1373; 1994.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Bio-oriented Technology Research Advancement Institution (BRAIN) and Grants-in Aid for Scientific Research (A) from the Japan Society for the Promotion of Science (JSPS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kozo Fujisaki.

Additional information

Editor: J. Denry Sato

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tanaka, T., Rahman, M.M., Battur, B. et al. Parasiticidal activity of human α-defensin-5 against Toxoplasma gondii . In Vitro Cell.Dev.Biol.-Animal 46, 560–565 (2010). https://doi.org/10.1007/s11626-009-9271-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-009-9271-9

Keywords

Navigation