Skip to main content
Log in

Regulation of the expression balance of angiopoietin-1 and angiopoietin-2 by Shh and FGF-2

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

Sonic hedgehog (Shh) is a typical morphogen to regulate epithelial–mesenchymal interactions during embryonic development. Shh is also an indirect angiogenic agent upregulating other angiogenic factors, including angiopoietin-1 (Ang-1). Recent studies revealed that angiogenesis induced by Shh is characterized by distinct large-diameter vessels with less branching. Ang-1 promotes blood vessel maturation, and angiopoietin-2 (Ang-2) counteracts Ang-1 activity and regulates vascular branching. Thus, we hypothesized that Shh-induced angiogenesis is affected by expression of Ang-1 and Ang-2, and we investigated the regulatory system of angiopoietins by Shh in vitro. Shh enhanced Ang-1 expression but did not enhance vascular endothelial growth factor in fibroblasts. The upregulation of Ang-1 expression by Shh was significantly decreased by fibroblast growth factor-2 (FGF-2), a potent angiogenic factor. Furthermore, FGF-2 increased the expression of Ang-2 in endothelial cells. These findings suggest that Shh and FGF-2 regulate the expression balance of vascular morphogens Ang-1 and Ang-2 and are involved in angiogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.

Similar content being viewed by others

References

  • Arias A. M. Epithelial mesenchymal interactions in cancer and development. Cell 105: 425–431; 2001.

    Article  CAS  PubMed  Google Scholar 

  • Asahara T.; Chen D.; Takahashi T.; Fujikawa K.; Kearney M.; Magner M.; Yancopoulos G. D.; Isner J. M. Tie2 receptor ligands, angiopoietin-1 and angiopoietin-2, modulate VEGF-induced postnatal neovascularization. Circ Res 83: 233–240; 1998.

    CAS  PubMed  Google Scholar 

  • Brindle N. P.; Saharinen P.; Alitalo K. Signaling and functions of angiopoietin-1 in vascular protection. Circ Res 98: 1014–1023; 2006.

    Article  CAS  PubMed  Google Scholar 

  • Carmeliet P. Angiogenesis in health and disease. Nat Med 9: 653–660; 2003.

    Article  CAS  PubMed  Google Scholar 

  • Davis S.; Aldrich T. H.; Jones P. F.; Acheson A.; Compton D. L.; Jain V.; Ryan T. E.; Bruno J.; Radziejewski C.; Maisonpierre P. C.; Yancopoulos G. D. Isolation of angiopoietin-1, a ligand for the TIE2 receptor, by secretion-trap expression cloning. Cell 87: 1161–1169; 1996.

    Article  CAS  PubMed  Google Scholar 

  • Fogarty M. P.; Emmenegger B. A.; Grasfeder L. L.; Oliver T. G.; Wechsler-Reya R. J. Fibroblast growth factor blocks Sonic hedgehog signaling in neuronal precursors and tumor cells. Proc Natl Acad Sci USA 104: 2973–2978; 2007.

    Article  CAS  PubMed  Google Scholar 

  • Fujii T.; Yonemitsu Y.; Onimaru M.; Inoue M.; Hasegawa M.; Kuwano H.; Sueishi K. VEGF function for upregulation of endogenous PlGF during FGF-2-mediated therapeutic angiogenesis. Atherosclesosis 200: 51–57; 2008.

    Article  CAS  Google Scholar 

  • Fujii T.; Yonemitsu Y.; Onimaru M.; Tanii M.; Nakano T.; Egashira K.; Takehara T.; Inoue M.; Hasegawa M.; Kuwano H.; Sueishi K. Nonendothelial mesenchymal cell-derived MCP-1 is required for FGF-2-mediated therapeutic neovascularization: critical role of the inflammatory/arteriogenic pathway. Arterioscler Thromb Vasc Biol 26: 2483–2489; 2006.

    Article  CAS  PubMed  Google Scholar 

  • Gutin G.; Fernandes M.; Palazzolo L.; Paek H.; Yu K.; Ornitz D. M.; McConnell S. K.; Hébert J. M. FGF signaling generates ventral telencephalic cells independently of SHH. Development 133: 2937–2946; 2006.

    Article  CAS  PubMed  Google Scholar 

  • Heil M.; Schaper W. Influence of mechanical, cellular, and molecular factors on collateral artery growth. Circ Res 95: 449–458; 2004.

    Article  CAS  PubMed  Google Scholar 

  • Holash J.; Maisonpierre P. C.; Compton D.; Boland P.; Alexander C. R.; Zagzag D.; Yancopoulos G. D.; Wiegand S. J. Vessel cooption, regression and growth in tumors mediated by angiopoietins and VEGF. Science 284: 1994–1998; 1999.

    Article  CAS  PubMed  Google Scholar 

  • Kusano K. F.; Allendoerfer K. L.; Munger W.; Pola R.; Bosch-Marce M.; Kirchmair R.; Yoon Y.; Curry C.; Silver M.; Kearney M.; Asahara T.; Losordo D. W. Sonic hedgehog induces arteriogenesis in diabetic vasa nervorum and restores function in diabetic neuropathy. Arterioscler Thromb Vasc Biol 24: 2102–2107; 2004.

    Article  CAS  PubMed  Google Scholar 

  • Lavine K. J.; White A. C.; Park C.; Smith C. S.; Choi K.; Long F.; Hui C. C.; Ornitz D. M. Fibroblast growth factor signals regulate a wave of Hedgehog activation that is essential for coronary vascular development. Genes Dev 20: 1651–1666; 2006.

    Article  CAS  PubMed  Google Scholar 

  • Lawson N. D.; Vogel A. M.; Weinstein B. M. Sonic hedgehog and vascular endothelial growth factor act upstream of the Notch pathway during arterial endothelial differentiation. Dev Cell 3: 127–136; 2002.

    Article  CAS  PubMed  Google Scholar 

  • Lee S. W.; Moskowitz M. A.; Sims J. R. Sonic hedgehog inversely regulates the expression of angiopoietin-1 and angiopoietin-2 in fibroblast. Int J Mol Med 19: 445–451; 2007.

    PubMed  Google Scholar 

  • Mandriota S. J.; Pepper M. S. Regulation of angiopoietin-2 mRNA levels in bovine microvascular endothelial cells by cytokines and hypoxia. Circ Res 83: 852–859; 1998.

    CAS  PubMed  Google Scholar 

  • Masaki I.; Yonemitsu Y.; Yamashita A.; Sata S.; Tanii M.; Komori K.; Nakagawa K.; Hou X.; Nagai Y.; Hasegawa M.; Sugimachi K.; Sueishi K. Gene therapy for experimental critical limb ischemia: acceleration of limb loss by overexpression of VEGF165 but not of FGF-2. Circ Res 90: 966–973; 2002.

    Article  CAS  PubMed  Google Scholar 

  • Nagase T.; Nagase M.; Yoshimura K.; Fujita T.; Koshima I. Angiogenesis within the developing mouse neural tube is dependent on sonic hedgehog signaling: possible roles of motor neurons. Genes Cells 10: 595–604; 2005.

    Article  CAS  PubMed  Google Scholar 

  • Onimaru M.; Yonemitsu Y.; Tanii M.; Nakagawa K.; Masaki I.; Okano S.; Ishibashi H.; Shirasuna K.; Hasegawa M.; Sueishi K. FGF-2 gene transfer can stimulate HGF expression, irrespective of hypoxia-mediated down regulation in ischemic limbs. Circ Res 91: 723–730; 2002.

    Article  Google Scholar 

  • Pola R.; Ling L. E.; Aprahamian T. R.; Barban E.; Bosch-Marce M.; Curry C.; Corbley M.; Kearney M.; Isner J. M.; Losordo D. W. Postnatal recapitulation of embryonic hedgehog pathway in response to skeletal muscle ischemia. Circulation 108: 479–485; 2003.

    Article  PubMed  Google Scholar 

  • Pola R.; Ling L. E.; Silver M.; Corbley M. J.; Kearney M.; Pepinsky R. B.; Shapiro R.; Taylor F. R.; Baker D. P.; Asahara T.; Isner J. M. The morphogen Sonic hedgehog is an indirect angiogenic agent upregulating two families of angiogenic growth factors. Nat Med 7: 706–711; 2001.

    Article  CAS  PubMed  Google Scholar 

  • Sato T. N.; Tozawa Y.; Deutsh U.; Wolburg-Buchholz K.; Fujiwara Y.; Gendron-Maguire M.; Gridley T.; Wolburg H.; Risau W.; Qin Y. Distinct roles of the receptor tyrosine kinases Tie-1 and Tie-2 in blood vessel formation. Nature 376: 70–74; 1995.

    Article  CAS  PubMed  Google Scholar 

  • Spence J. R.; Avcinena J. C.; Del Rio-Tsonis K. Fibroblast growth factor-hedgehog interdependence during retina regeneration. Dev Dyn 236: 1161–1174; 2007.

    Article  CAS  PubMed  Google Scholar 

  • Surace E. M.; Balaggan K. S.; Tessitore A.; Mussolino C.; Cotugno G.; Bonetti C.; Vitale A.; Ali R. R.; Auricchio A. Inhibition of ocular neovascularization by hedgehog blockade. Mol Thr 13: 573–579; 2006.

    Article  CAS  Google Scholar 

  • Suri C.; Jones P. F.; Patan S.; Bartunkova S.; Maisonpierre P. C.; Davis S.; Sato T. N.; Yancopoulos G. D. Requisite role of angiopoietin-1, a ligand for the TIE2 receptor, during embryonic angiogenesis. Cell 87: 1171–1180; 1996.

    Article  CAS  PubMed  Google Scholar 

  • Taipale J.; Chen J. K.; Cooper M. K.; Wang B.; Mann R. K.; Milenkovic L.; Scott M. P.; Beachy P. A. Effects of oncogenic mutations in Smoothened and Patched can be reversed by cyclopamine. Nature 406: 1005–1009; 2000.

    Article  CAS  PubMed  Google Scholar 

  • Tsutsumi N.; Yonemitsu Y.; Shikada Y.; Onimaru M.; Tanii M.; Okano S.; Hasegawa M.; Maehara Y.; Hashizume M.; Sueishi K. Essential role of PDGFRα-p70S6K signaling in mesenchymal cells during therapeutic and tumor angiogenesis in vivo: role PDGFRα during angiogenesis. Circ Res 94: 1186–1194; 2004.

    Article  CAS  PubMed  Google Scholar 

  • van Tuyl M.; Groenman F.; Wang J.; Kuliszewski M.; Liu J.; Tibboel D.; Post M. Angiogenic factors stimulate tubular branching morphogenesis of sonic hedgehog-deficient lungs. Dev Biol 303: 514–526; 2007.

    Article  PubMed  Google Scholar 

  • Visconti R. P.; Richardson C. D.; Sato T. N. Orchestration of angiogenesis and arteriovenous contribution by angiopoietins and vascular endothelial growth factor (VEGF). Proc Natl Acad Sci USA 99: 8219–8224; 2002.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Saitoh Y, Yano T, Ohno M, Ida M, and Emura H for their secretarial assistance.

Competing Interest Statement

The authors declare that they have no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takaaki Fujii.

Additional information

Editor: J. Denry Sato

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fujii, T., Kuwano, H. Regulation of the expression balance of angiopoietin-1 and angiopoietin-2 by Shh and FGF-2. In Vitro Cell.Dev.Biol.-Animal 46, 487–491 (2010). https://doi.org/10.1007/s11626-009-9270-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-009-9270-x

Keywords

Navigation