Skip to main content
Log in

Murine mesenchymal stem cell isolated and expanded in low and high density culture system: surface antigen expression and osteogenic culture mineralization

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

Marrow culture from mice has been reported to be overgrown by non-mesenchymal cells. In almost all protocols for isolation of murine mesenchymal stem cells (MSCs), high density culture systems have been employed. Since MSCs are colonogenic cells, the initiating cell seeding density may have significant impact on their cultures. This subject was explored in this study. For this purpose, the bone marrow cells from NMRI mice were plated at 2.5 × 106 cells/cm2 and upon confluency were reseeded as either low density (50 cells/cm2) or high density (8 × 104 cells/cm2) cultures. The cells were expanded through an additional subculture and the passage 2 cells as a product of two culture systems were statistically compared with respect to their surface antigen profiles and osteogenic culture mineralization. While low density culture grew with multiple colony formation, there were no distinct colonies in high density cultures. In contrast to high density cultures, passage 2 cells from low density system possessed typical homogenous fibroblastic morphology. Some cells from high density system but not the low density cultures expressed hematopoietic and endothelial cell markers including CD135, CD34, CD31, and Vcam surface antigens. Furthermore, osteogenic cultures from low density system displayed significantly more mineralization than those from high density system. Taken together, it seems that low density culture system resulted in more purified MSC culture than its counterpart as high density culture system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.

Similar content being viewed by others

References

  • Abdallah B. M.; Kassem M. Human mesenchymal stem cells: from basic biology to clinical applications. Gene. Ther. 15: 109–116; 2007.

    Article  PubMed  CAS  Google Scholar 

  • Baddoo M.; Hill K.; Wilkinson R.; Gaupp D.; Hughes C.; Kopen G. C.; Phinney D. G. Characterization of mesenchymal stem cells isolated from murine bone marrow by negative selection. J. Cellul. Biochem. 89: 1235–1249; 2003.

    Article  CAS  Google Scholar 

  • Baksh D.; Song L.; Tuan R. S. Adult mesenchymal stem cells. Characterization, differentiation and application in cell therapy. Mol. Med. 8: 301–136; 2004.

    CAS  Google Scholar 

  • Baldwin H. S.; Shen H. M.; Yan H. C.; DeLisser H. M.; Chung A.; Mickanin C.; Trask T.; Kirschbaum N. E.; Newman P. J.; Albelda S. M.; et al. Platelet endothelial cell adhesion molecule-1 (PECAM-1/CD31): alternatively spliced, functionally distinct isoforms expressed during mammalian cardiovascular development. Development 120: 2539–2553; 1994.

    PubMed  CAS  Google Scholar 

  • Barry F. P. Mesenchymal stem cell therapy in joint disease. Novartis Found. Symp. 249: 86–96; 2003.

    Article  PubMed  Google Scholar 

  • Bianco P.; Riminucci M.; Gronthos S.; Robey P. G. Bone marrow stromal stem cells. Nature, biology, and potential applications. Stem. Cells 19: 180–192; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Chapel A.; Bertho J. M.; Bensidhoum M.; Fouillard L.; Young R. G.; Frick J.; Demarquay C.; Cuvelier F.; Mathieu E.; Trompier F.; Dudoignon N.; Germain C.; Mazurier C.; Aigueperse J.; Borneman J.; Gorin N. C.; Gourmelon P.; Thierry D. Mesenchymal stem cells home to injured tissues when co-infused with hematopoietic cells to treat a radiation-induced multi-organ failure syndrome. J. Gene Med. 5: 1028–1038; 2003.

    Article  PubMed  Google Scholar 

  • Devine S. M.; Bartholomew A. M.; Mahmud N.; Nelson M.; Patil S.; Hardy W.; Sturgeon C.; Hewett T.; Chung T.; Stock W.; Sher D.; Weissman S.; Ferrer K.; Mosca J.; Deans R.; Moseley A.; Hoffman R. Mesenchymal stem cells are capable of homing to the bone marrow of non-human primates following systemic infusion. Exp. Hematol. 29: 244–255; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Eslaminejad M. B.; Mirzadeh H.; Mohamadi Y.; Aghbibi N. Bone differentiation of the marrow-derived mesenchymal stem cells using β-tricalcium phosphate/alginate/gelatin hybrid scaffolds. J. Tiss. Eng. Reg. Med. 6: 417; 424; 2007.

    Article  CAS  Google Scholar 

  • Eslaminejad M. B.; Nadri S.; Hosseini R. H. Expression of Thy 1.2 surface antigen increases significantly during the murine MSCs cultivation period. Dev. Growth Differ. 49: 351–364; 2007.

    Article  PubMed  CAS  Google Scholar 

  • Eslaminejad M. B.; Nikmahzar A.; Taghiyar L.; Nadri S.; Massumi M. Murine mesenchymal stem cells isolated by low density primary culture system. Dev. Growth Differ. 48: 361–370; 2006.

    Article  PubMed  CAS  Google Scholar 

  • Friedenstein A. J.; Chailakhyan R. K.; Latsinik N. V.; Panansyuk A. F.; Keiliss-Borok I. V. Stromal cells responsible for transferring the microenvironment of the hematopoietic tissues. Cloning in vitro and retransplantation in vivo. Transplantation 17: 331–340; 1974b.

    Article  PubMed  CAS  Google Scholar 

  • Friedenstein A. J.; Deriglasova U. F.; Kulagina N. N.; Panasuk A. F.; Rudakowa S. F.; Luriá E. A.; Ruadkow I. A. Precursors for fibroblasts in different populations of hematopoietic cells as detected by the in vitro colony assay methods. Exp. Hematol. 2: 83–92; 1974a.

    PubMed  CAS  Google Scholar 

  • Grinnemo K. H.; Månsson A.; Dellgren G.; Klingberg D.; Wardell E.; Drvota V.; Tammik C.; Holgersson J.; Ringdén O.; Sylvén C.; Le Blanc K. Xenoreactivity and engraftment of human mesenchymal stem cells transplantation into infarcted rat myocardium. J. Thorac. Cardiovasc. Surg. 127: 1293–1300; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Horwitz E. M.; Gordon P. L.; Koo W. K.; Marx J. C.; Neel M. D.; McNall R. Y.; Muul L.; Hofmann T. Isolated allogenic bone marrow-derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfecta: implications for cell therapy of bone. Proc. Natl. Acad. Sci. U.S.A. 99: 8932–8937; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Ikuta K.; Weissman I. L. Evidence that hematopoietic stem cells express mouse c-kit but do not depend on steel factor for their generation. Proc. Natl. Acad. Sci. U.S.A. 89: 1502–1506; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Jessop H. L.; Noble B. S.; Cryer A. The differentiation of a potential mesenchymal stem cells population within ovine bone marrow. Biochem. Soc. Trans. 22: 248; 1994.

    Google Scholar 

  • Kadiyala S.; Young R. G.; Thiede M. A.; Bruder S. P. Culture expanded canine mesenchymal stem cells possess osteochondrogenic potential in vivo and in vitro. Cell Transplant. 6: 125–134; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Kinashi T.; St Pierre Y.; Springer T. A. Expression of glycophosphatidylinositol-anchored and -non-anchored isoforms of vascular cell adhesion molecule 1 in murine stromal and endothelial cells. J. Leukoc. Biol. 57: 168–173; 1995.

    PubMed  CAS  Google Scholar 

  • Koe O. N.; Gerson S. L.; Cooper B. W.; Dyhonse S. M.; Haynesworth S. E.; Caplan A. I.; Lazarus H. M. Rapid hematopoietic recovery after confusion of autologous-blood stem cells in advanced breast cancer patients receiving high dose chemotherapy. J. Clin. Oncol. 18: 307–316; 2000.

    Google Scholar 

  • Majumdar M. K.; Thiede M. A.; Mosa J. D.; Moorman M.; Gerson S. L. Phenotypic and functional comparison of cultures of marrow-derived mesenchymal stem cells (MSCs) and stromal cells. J. Cell Physiol. 176: 57–66; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Martin D. R.; Cox N. R.; Hathcock T. L.; Niemeyer G. P.; Baker H. J. Isolation and characterization of multipotential mesenchymal stem cells from feline bone marrow. Exp. Hematol. 308: 879–886; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Meirelles L. D. S.; Nardi N. B. Murine marrow derived mesenchymal stem cell. Isolation, in vitro expansion, and characterization. Brit. J. Hemat. 123: 702–711; 2003.

    Article  Google Scholar 

  • Mosca J. D.; Hendricks J. K.; Buyaner D.; Davis-Sproul J.; Chuang L. C.; Majumdar M. K.; Chopra R.; Barry F.; Murphy M.; Thiede M. A.; Junker U.; Rigg R. J.; Forestell S. P.; Böhnlein E.; Storb R.; Sandmaier B. M. Mesenchymal stem cells as vehicles for gene delivery. Clin. Orthop. 379: 71–90; 2000.

    Article  Google Scholar 

  • Nadri S.; Soleimani M. Isolation murine mesenchymal stem cells by positive selection. In Vitro Cell Dev. Biol. Anim. 43: 276–282; 2007.

    Article  PubMed  CAS  Google Scholar 

  • Nadri S.; Soleimani M.; Hosseini R. H.; Massumi M.; Atashi A. An efficient method for isolation of murine bone marrow mesenchymal stem cells. Int. J. Dev. Biol. 51: 723–729; 2007.

    Article  PubMed  CAS  Google Scholar 

  • Ogawa M.; Sugawara S.; Kunisada T.; Sudo T.; Hayashi S.; Nishikawa S.; Kodama H.; Nishikawa S. Flt3/Flk-2 and c-Kit are not essential for the proliferation of B lymphoid progenitor cells in the bone marrow of the adult mouse. Exp. Hematol. 26: 478–488; 1998.

    PubMed  CAS  Google Scholar 

  • Osawa M.; Hanada K.; Hamada H.; Nakauchi H. Long-term lymphohematopoietic reconstitution by a single CD34-low/negative hematopoietic stem cell. Science 273: 242–245; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Peister A.; Mellad J. A.; Larsen L. L.; Hall B. M.; Gibson L. F.; Prockop D. J. Adult stem cells from bone marrow (MSCs) isolated from different strains of inbred mice vary in surface epitopes, rates of proliferation, and differentiation potential. Blood 103: 1662–1668; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Petite H.; Viateau V.; Bensaid W.; Meunier A.; Depollak C.; Bourguignon M.; Oudina K.; Sedel L.; Guillemin G. Tissue engineered bone regeneration. Nat. Biotechnol. 18: 959–963; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Pittenger M. F.; Mackay A. M.; Beck S. C.; Jaiswal R. K.; Douglas R.; Mosca J. D.; Moorman M. A.; Simonetti D. W.; Craig S.; Marshak D. R. Multilineage potential of adult human mesenchymal stem cells. Science 248: 143–147; 1999.

    Article  Google Scholar 

  • Quarto R.; Mastrogiacomo M.; Cancedda R.; Kutepdda S. M.; Mukhachev V.; Lavroukov A.; Kon E.; Marcacci M. Repair of large bone defect with the use of autogenic bone marrow stromal cell. N. Engl. J. Med. 344: 385–386; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Ringe J.; Kaps C.; Schmitt B.; Buscher K.; Bartel J.; Smolian H.; Schultz O.; Burmester G. R.; Haupl T.; Sittinger M. Porcine mesenchymal stem cells. Induction of distinct mesenchymal cell lineages. Cell Tissue Res. 307: 321–327; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Shao X.; Goh J. C.; Hutmacher D. W.; Lee E. H.; Zigang G. Repair of large articular osteochondral defects using hybrid scaffolds and bone marrow-derived mesenchymal stem cells in rabbit model. Tissue Eng. 12: 1539–1551; 2006.

    Article  PubMed  CAS  Google Scholar 

  • Sugaya K. Potential use of stem cells in neuro-replacement therapies for neurodegenerative diseases. Int. Rev. Cytol. 228: 1–30; 2003.

    Article  PubMed  Google Scholar 

  • Sun S.; Guo Z.; Xiao X.; Liu B.; Liu X.; Tang P. H.; Mao N. Isolation of mouse marrow mesenchymal progenitors by a novel and reliable method. Stem. Cells 21: 527–535; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Tropel P.; Noel D.; Platet N.; Legrand P.; Benabid A. L.; Berger F. Isolation and characterization of mesenchymal stem cells from adult mouse bone marrow. Exp. Cell Res. 295: 395–406; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Xian C. J.; Foster B. K. Repair of injured articular and growth plate cartilage using mesenchymal stem cells and chondrogenic gene therapy. Curr. Stem. Cell Res. Ther. 1: 213–229; 2006.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamadreza Baghaban Eslaminejad.

Additional information

Editor: J. Denry Sato

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eslaminejad, M.B., Nadri, S. Murine mesenchymal stem cell isolated and expanded in low and high density culture system: surface antigen expression and osteogenic culture mineralization. In Vitro Cell.Dev.Biol.-Animal 45, 451–459 (2009). https://doi.org/10.1007/s11626-009-9198-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-009-9198-1

Keywords

Navigation