Skip to main content

Advertisement

Log in

The effect of short-term, high glucose concentration on endothelial cells and leukocytes in a 3D in vitro human vascular tissue model

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

Efforts to determine a link between diabetes and atherosclerosis have involved examining the effect of high glucose levels on the adhesion and migration of circulating leukocytes, mostly monocytes and T lymphocytes. Leukocyte differentiation and proliferation within the subendothelial space can also be investigated by the use of a 3D in vitro human vascular tissue model. This model was used to study the effect of short-term, high glucose concentration on certain cell behavior associated with the early stages of atherosclerosis. Samples were exposed to either a 30- or 5.6-mM glucose concentration for 9 h to represent either hyperglycemic or normoglycemic conditions, respectively. There was a significant increase in vascular cell adhesion molecule-1 expression on the endothelial cells exposed to a 30-mM compared to a 5.6-mM glucose concentration. There was no significant difference in either intercellular adhesion molecule-1 or E-selectin expression on the endothelial cells exposed to a 30-mM compared to a 5.6-mM glucose concentration. After the endothelium was exposed to 30 mM glucose concentration, there was a 70% increase in the number of monocytes (CD14+) migrating across the endothelium and a 28% increase in the number of these monocytes differentiating into macrophages, compared to cell migration and differentiation across the endothelium exposed to 5.6 mM glucose concentration. Also, for the endothelium exposed to 30 mM glucose concentration, there were nearly 2.5 times more T lymphocytes that migrated across the endothelium, along with significant cell proliferation, compared to cell migration across the endothelium exposed to 5.6 mM glucose concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.

Similar content being viewed by others

References

  • Altannavch, T. S.; Roubalova, K.; Kucera, P.; Andel, M. Effect of high glucose concentrations on expression of ELAM-1, VCAM-1 and ICAM-1 in HUVEC with and without cytokine activation. Physiol. Res. 53: 77–82; 2004.

    PubMed  CAS  Google Scholar 

  • Baumgartner-Parzer, S. M.; Wagner, L.; Pettermann, M.; Gessl, A.; Waldhausl, W. Modulation by high glucose of adhesion molecule expression in cultured endothelial cells. Diabetologia 38: 1367–1370; 1995. doi:10.1007/BF00401771.

    Article  PubMed  CAS  Google Scholar 

  • Bevilacqua, M. P. Endothelial-leukocyte adhesion molecules. Annu. Rev. Immunol. 11: 767–804; 1993. doi:10.1146/annurev.iy.11.040193.004003.

    Article  PubMed  CAS  Google Scholar 

  • Blankenberg, S.; Barbaux, S.; Tiret, L. Adhesion molecules and atherosclerosis. Atherosclerosis 170: 191–203; 2003. doi:10.1016/S0021-9150(03)00097-2.

    Article  PubMed  CAS  Google Scholar 

  • Chia, M. C. The role of adhesion molecules in atherosclerosis. Crit. Rev. Clin. Lab. Sci. 35: 573–602; 1998. doi:10.1080/10408369891234282.

    Article  PubMed  CAS  Google Scholar 

  • Cybulsky, M. I.; Gimbrone, M. A. Jr. Endothelial expression of a mononuclear leukocyte adhesion molecule during atherogenesis. Science 251: 788–791; 1991. doi:10.1126/science.1990440.

    Article  PubMed  CAS  Google Scholar 

  • Gerrity, R. G. The role of the monocyte in atherogenesis: I. Transition of blood-borne monocytes into foam cells in fatty lesions. Am. J. Pathol. 103: 181–190; 1981.

    PubMed  CAS  Google Scholar 

  • Hansson, G. K.; Holm, J.; Jonasson, L. Detection of activated T lymphocytes in the human atherosclerotic plaque. Am. J. Pathol. 135: 169–175; 1989.

    PubMed  CAS  Google Scholar 

  • Jonasson, L.; Holm, J.; Skalli, O.; Bondjers, G.; Hansson, G. K. Regional accumulations of T cells, macrophages, and smooth muscle cells in the human atherosclerotic plaque. Arteriosclerosis 6: 131–138; 1986.

    PubMed  CAS  Google Scholar 

  • Kim, J. A.; Berliner, J. A.; Natarajan, R. D.; Nadler, J. L. Evidence that glucose increases monocyte binding to human aortic endothelial cells. Diabetes 43: 1103–1107; 1994. doi:10.2337/diabetes.43.9.1103.

    Article  PubMed  CAS  Google Scholar 

  • Kume, N.; Cybulsky, M. I.; Gimbrone, M. A. Jr. Lysophosphatidylcholine, a component of atherogenic lipoproteins, induces mononuclear leukocyte adhesion molecules in cultured human and rabbit arterial endothelial cells. J. Clin. Invest. 90: 1138–1144; 1992. doi:10.1172/JCI115932.

    Article  PubMed  CAS  Google Scholar 

  • Li, H.; Cybulsky, M. I.; Gimbrone, M. A. Jr.; Libby, P. An atherogenic diet rapidly induces VCAM-1, a cytokine-regulatable mononuclear leukocyte adhesion molecule, in rabbit aortic endothelium. Arterioscler. Thromb. 13: 197–204; 1993.

    PubMed  Google Scholar 

  • Lidington, E. A.; Moyes, D. L.; McCormack, A. M.; Rose, M. L. A comparison of primary endothelial cells and endothelial cell lines for studies of immune interactions. Transpl. Immunol. 7: 239–246; 1999. doi:10.1016/S0966-3274(99)80008-2.

    Article  PubMed  CAS  Google Scholar 

  • Manduteanu, I.; Voinea, M.; Serban, G.; Simionescu, M. High glucose induces enhanced monocyte adhesion to valvular endothelial cells via a mechanism involving ICAM-1, VCAM-1 and CD18. Endothelium 6: 315–324; 1999. doi:10.3109/10623329909078498.

    Article  PubMed  CAS  Google Scholar 

  • Morigi, M.; Angioletti, S.; Imberti, B.; Donadelli, R.; Micheletti, G.; Figliuzzi, M.; Remuzzi, A.; Zoja, C.; Remuzzi, G. Leukocyte-endothelial interaction is augmented by high glucose concentrations and hyperglycemia in a NF-kB-dependent fashion. J. Clin. Invest. 101: 1905–1915; 1998. doi:10.1172/JCI656.

    Article  PubMed  CAS  Google Scholar 

  • Nakashima, Y.; Raines, E. W.; Plump, A. S.; Breslow, J. L.; Ross, R. Upregulation of VCAM-1 and ICAM-1 at atherosclerosis-prone sites on the endothelium in the ApoE-deficient mouse. Arterioscler. Thromb. Vasc. Biol. 18: 842–851; 1998.

    PubMed  CAS  Google Scholar 

  • Nathan, D. M. Long-term complications of diabetes mellitus. N. Engl. J. Med. 328: 1676–1685; 1993. doi:10.1056/NEJM199306103282306.

    Article  PubMed  CAS  Google Scholar 

  • Piconi, L.; Quagliaro, L.; Da Ros, R.; Assaloni, R.; Giugliano, D.; Esposito, K.; Szabo, C.; Ceriello, A. Intermittent high glucose enhances ICAM-1, VCAM-1, E-selectin and interleukin-6 expression in human umbilical endothelial cells in culture: the role of poly(ADP-ribose) polymerase. J. Thromb. Haemost. 2: 1453–1459; 2004. doi:10.1111/j.1538-7836.2004.00835.x.

    Article  PubMed  CAS  Google Scholar 

  • Piga, R.; Naito, Y.; Kokura, S.; Handa, O.; Yoshikawa, T. Short-term high glucose exposure induces monocyte-endothelial cells adhesion and transmigration by increasing VCAM-1 and MCP-1 expression in human aortic endothelial cells. Atherosclerosis 193: 328–334; 2007. doi:10.1016/j.atherosclerosis.2006.09.016.

    Article  PubMed  CAS  Google Scholar 

  • Puente Navazo, M. D.; Chettab, K.; Duhault, J.; Koenig-Berard, E.; McGregor, J. L. Glucose and insulin modulate the capacity of endothelial cells (HUVEC) to express P-selectin and bind a monocytic cell line (U937). Thromb. Haemost. 86: 680–685; 2001.

    PubMed  CAS  Google Scholar 

  • Ross, R. The pathogenesis of atherosclerosis—an update. N. Engl. J. Med. 314: 488–500; 1986.

    PubMed  CAS  Google Scholar 

  • Steiner, G. Atherosclerosis, the major complication of diabetes. Adv. Exp. Med. Biol. 189: 277–297; 1985.

    PubMed  CAS  Google Scholar 

  • Stemme, S.; Holm, J.; Hansson, G. K. T lymphocytes in human atherosclerotic plaques are memory cells expressing CD45RO and the integrin VLA-1. Arterioscler. Thromb. 12: 206–211; 1992.

    PubMed  CAS  Google Scholar 

  • Takami, S.; Yamashita, S.; Kihara, S.; Kameda-Takemura, K.; Matsuzawa, Y. High concentration of glucose induces the expression of intercellular adhesion molecule-1 in human umbilical vein endothelial cells. Atherosclerosis 138: 35–41; 1998. doi:10.1016/S0021-9150(97)00286-4.

    Article  PubMed  CAS  Google Scholar 

  • Taki, H.; Kashiwagi, A.; Tanaka, Y.; Horiike, K. Expression of intercellular adhesion molecules 1 (ICAM-1) via an osmotic effect in human umbilical vein endothelial cells exposed to high glucose medium. Life Sci. 58: 1713–1721; 1996. doi:10.1016/0024-3205(96)00151-8.

    Article  PubMed  CAS  Google Scholar 

  • Turner, R.; Cull, C.; Holman, R. United Kingdom Prospective Diabetes Study 17: a 9-year update of a randomized, controlled trial on the effect of improved metabolic control on complications in non-insulin-dependent diabetes mellitus. Ann. Intern. Med. 124: 136–145; 1996.

    PubMed  CAS  Google Scholar 

  • van der Wal, A. C.; Becker, A. E.; van der Loos, C. M.; Das, P. K. Site of intimal rupture or erosion of thrombosed coronary atherosclerotic plaques is characterized by an inflammatory process irrespective of the dominant plaque morphology. Circulation 89: 36–44; 1994.

    PubMed  Google Scholar 

  • van der Wal, A. C.; Das, P. K.; Bentz van de Berg, D.; van der Loos, C. M.; Becker, A. E. Atherosclerotic lesions in humans. In situ immunophenotypic analysis suggesting an immune mediated response. Lab. Invest. 61: 166–170; 1989.

    PubMed  Google Scholar 

  • Walpola, P. L.; Gotlieb, A. I.; Cybulsky, M. I.; Langille, B. L. Expression of ICAM-1 and VCAM-1 and monocyte adherence in arteries exposed to altered shear stress. Arterioscler. Thromb. Vasc. Biol. 15: 2–10; 1995.

    PubMed  CAS  Google Scholar 

  • Watson, A. D.; Leitinger, N.; Navab, M.; Faull, K. F.; Horkko, S.; Witztum, J. L.; Palinski, W.; Schwenke, D.; Salomon, R. G.; Sha, W.; Subbanagounder, G.; Fogelman, A. M.; Berliner, J. A. Structural identification by mass spectrometry of oxidized phospholipids in minimally oxidized low density lipoprotein that induce monocyte/endothelial interactions and evidence for their presence in vivo. J. Biol. Chem. 272: 13597–13607; 1997. doi:10.1074/jbc.272.21.13597.

    Article  PubMed  CAS  Google Scholar 

  • Webster, M. W.; Scott, R. S. What cardiologists need to know about diabetes. Lancet 350Suppl 1: SI23–SI28; 1997. doi:10.1016/S0140-6736(97)90025-8.

    PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported by a new faculty start-up grant by the College of Engineering, Architecture, and Technology at Oklahoma State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Gappa-Fahlenkamp.

Additional information

Editor: J. Denry Sato

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gappa-Fahlenkamp, H., Shukla, A.S. The effect of short-term, high glucose concentration on endothelial cells and leukocytes in a 3D in vitro human vascular tissue model. In Vitro Cell.Dev.Biol.-Animal 45, 234–242 (2009). https://doi.org/10.1007/s11626-008-9171-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-008-9171-4

Keywords

Navigation