Skip to main content

Advertisement

Log in

Pax2 overexpression in embryoid bodies induces upregulation of integrin α8 and aquaporin-1

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

The transcription factor Pax2 is essential for kidney development in mice, and overexpression of Pax2 in chick embryos leads to ectopic formation of nephric structures. We have generated embryonic stem (ES) cell lines that repress Pax2 expression in a tetracycline-dependent manner. In the absence of tetracycline, embryoid bodies derived from these cell lines expressed Pax2 and subsequently integrin α8 and aquaporin-1 (Aqp1), both of which are possibly involved in kidney development. Considering the slow induction kinetics, our data suggest that Pax2 and additional factors that are induced in embryoid bodies synergistically regulate the two targets. The ES cell lines with inducible Pax2 expression will also be useful for dissecting genetic cascades functioning in a variety of organ development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.

Similar content being viewed by others

References

  • Agre P.; Nielsen S. The aquaporin family of water channels in kidney. Nephrology. 17: 409–415; 1996.

    CAS  Google Scholar 

  • Agre P.; Preston G. M.; Smith B. L.; Jung J. S.; Raina S.; Moon C.; Guggino W. B.; Nielsen S. Aquaporin CHIP: the archetypal molecular water channel. Am. J. Physiol. Renal Fluid Electrolyte Physiol. 265: F463–F476; 1993.

    CAS  Google Scholar 

  • Bouchard M.; Souabni A.; Mandler M.; Neubüser Nephric lineage specification by Pax2 and Pax8. Genes Dev. 16: 2958–2970; 2002. doi:10.1101/gad.240102.

    Article  PubMed  CAS  Google Scholar 

  • Brandenberger R.; Schmidt A.; Linton J.; Wang D.; Backus C.; Müller U.; Reichardt L. F. Identification and characterization of a novel extracellular matrix protein nephronectin that is associated with integrin α8β1 in the embryonic kidney. J. Cell Biol. 154: 447–458; 2001. doi:10.1083/jcb.200103069.

    Article  PubMed  CAS  Google Scholar 

  • Brophy P. D.; Ostrom L.; Lang K. M.; Dressler G. R. Regulation of ureteric bud outgrowth by Pax2-dependent activation of the glial derived neurotrophic factor gene. Development 128: 4747–4756; 2001.

    PubMed  CAS  Google Scholar 

  • Daley G. Q. From embryos to embryoid bodies: Generationg blood from embryonic stem cells. Ann. N. Y. Acad. Sci. 996: 122–131; 2003.

    Article  PubMed  Google Scholar 

  • Dressler G. R. The cellular basis of kidney development. Annu. Rev. Cell Dev. Biol. 22: 509–529; 2006. doi:10.1146/annurev.cellbio.22.010305.104340.

    Article  PubMed  CAS  Google Scholar 

  • Gong K. Q.; Yallowitz A. R.; Sun H.; Dressler G. R.; Wellik D. M. A Hox–Eya–Pax complex regulates early kidney developmental gene expression. Mol. Cell. Biol. 27: 7661–7668; 2007. doi:10.1128/MCB.00465-07.

    Article  PubMed  CAS  Google Scholar 

  • Kania G.; Blyszczuk P.; Czyz J.; Navarrete-Santos A.; Wobus A. M. Differentiation of mouse embryonic stem cells into pancreatic and hepatic cells. Methods Enzymol. 365: 287–303; 2003. doi:10.1016/S0076-6879(03)65021-4.

    Article  PubMed  CAS  Google Scholar 

  • Kim D.; Dressler G. R. Nephrogenic factors promote differentiation of mouse embryonic stem cells into renal epithelia. J. Am. Soc. Nephrol. 16: 3527–3534; 2005. doi:10.1681/ASN.2005050544.

    Article  PubMed  CAS  Google Scholar 

  • Kim J. G.; Son Y. J.; Yun C. H.; Kim Y. I.; Nam-Goong I. S.; Park J. H.; Park S. K.; Ojeda S. R.; D’Elia A. V.; Damate G.; Lee B. J. Thyroid transcription factor-1 facilitates cerebrospinal fluid formation by regulating aquaporin-1 synthesis in the brain. J. Biol. Chem. 282: 14923–14931; 2007. doi:10.1074/jbc.M701411200.

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi T.; Tanaka H.; Kuwana H.; Inoshita S.; Teraoka H.; Sasaki S.; Terada Y. Wnt4-transformed mouse embryonic stem cells differentiate into renal tubular cells. Biochem. Biophys. Res. Commun. 336: 585–595; 2005. doi:10.1016/j.bbrc.2005.08.136.

    Article  PubMed  CAS  Google Scholar 

  • Kyba M.; Perlingeiro R. C. R.; Daley G. Q. HoxB4 confers definitive lymphoid–myeloid engraftment potential on embryonic stem cell and yolk sac hematopoietic progenitors. Cell 109: 29–37; 2002. doi:10.1016/S0092-8674(02)00680-3.

    Article  PubMed  CAS  Google Scholar 

  • Linton J. M.; Martin C. R.; Reichardt L. F. The ECM protein nephronectin promotes kidney development via integrin α8β1-mediated stimulation of Gdnf expression. Development 134: 2501–2509; 2007. doi:10.1242/dev.005033.

    Article  PubMed  CAS  Google Scholar 

  • Lumelsky N.; Blondel O.; Laeng P.; Velasco I.; Ravin R.; McKay R. Defferentiation of embryonic stem cells to insulin-secreting structures similar to pancreatic islets. Science 292: 1389–1394; 2001. doi:10.1126/science.1058866.

    Article  PubMed  CAS  Google Scholar 

  • Masui S.; Shimosato D.; Toyooka Y.; Yagi R.; Takahashi K.; Niwa H. An efficient system to establish multiple embryonic stem cell lines carrying an inducible expression unit. Nucleic Acids Res. 33: e43; 2005. doi:10.1093/nar/gni043.

    Article  PubMed  CAS  Google Scholar 

  • Muller U.; Wang D.; Denda S.; Meneses J. J.; Pedersen R. A.; Reichardt L. F. Integrin α8β1 is critically important for epithelial–mesenchymal interactions during kidney morphogenesis. Cell 88: 603–613; 1997. doi:10.1016/S0092-8674(00)81903-0.

    Article  PubMed  CAS  Google Scholar 

  • Nielsen S.; Agre P. The aquaporin family of water channels in kidney. Kidney Int. 48: 1057–1068; 1995. doi:10.1038/ki.1995.389.

    Article  PubMed  CAS  Google Scholar 

  • Niwa H.; Yamamura K.; Miyazaki J. Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene 108: 193–199; 1991. doi:10.1016/0378-1119(91)90434-D.

    Article  PubMed  CAS  Google Scholar 

  • Osafune K.; Takasato M.; Kispert A.; Asashima M.; Nishinakamura R. Identification of multipotent progenitors in the embryonic mouse kidney by a novel colony-forming assay. Development 133: 151–161; 2007. doi:10.1242/dev.02174.

    Article  CAS  Google Scholar 

  • Sakaki-Yumoto M.; Kobayashi C.; Sato A.; Fujimura S.; Matsumoto Y.; Takasato M.; Kodama T.; Aburatani H.; Asashima M.; Yoshida N.; Nishinakamura R. The murine homolog of SALL4, a causative gene in Okihiro syndrome, is essential for embryonic stem cell proliferation, and cooperates with Sall1 in anorectal, heart, brain and kidney development. Development 233: 3005–3013; 2006. doi:10.1242/dev.02457.

    Article  CAS  Google Scholar 

  • Torres M.; Gomez-Pardo E.; Dressler G. R.; Gruss P. Pax-2 controls multiple steps of urogenital development. Development 121: 4057–4065; 1995.

    PubMed  CAS  Google Scholar 

  • Umenishi F.; Schrier R. W. Hypertonicity-induced aquaporin-1 (AQP1) expression is mediated by the activation of MAPK pathways and hypertonicity-responsive element in the AQP1 gene. J. Biol. Chem. 278: 15765–15770; 2003. doi:10.1074/jbc.M209980200.

    Article  PubMed  CAS  Google Scholar 

  • Vainio S.; Lin Y. Coordinating early kidney development: lessons from gene targeting. Nat. Rev. Genet. 3: 533–543; 2002. doi:10.1038/nrg842.

    Article  PubMed  CAS  Google Scholar 

  • Wichterle H.; Lieberam I.; Porter J. A.; Jessel T. M. Directed differentiation of embryonic stem cells into motor neurons. Cell 110: 287–303; 2002. doi:10.1016/S0092-8674(02)00835-8.

    Article  Google Scholar 

  • Yamamoto H.; Quinn G.; Asari A.; Yamanokuchi H.; Teratani T.; Terada M.; Ochiya T. Differentiation of embryonic stem cells into hepatocytes: Biological functions and therapeutic application. Hepatology 37: 983–993; 2003. doi:10.1053/jhep.2003.50202.

    Article  PubMed  CAS  Google Scholar 

  • Zambrowicz B. P.; Imamoto A.; Fiering S.; Herzenberg L. A.; Kerr W. G.; Soriano P. Disruption of overlapping transcripts in the ROSA βgeo 26 gene trap strain leads to widespread expression of β-galactosidase in mouse embryos and hematopoietic cells. Proc. Natl. Acad. Sci. U.S.A. 94: 3789–3794; 1997. doi:10.1073/pnas.94.8.3789.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank H. Niwa for providing MGZRTcH2 cells. This work was supported in part by the Ministry of Education, Culture, Sports, Science and Technology and by the Ministry of the Health, Labor and Welfare of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryuichi Nishinakamura.

Additional information

Editor: J. Denry Sato

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakane, A., Kojima, Y., Hayashi, Y. et al. Pax2 overexpression in embryoid bodies induces upregulation of integrin α8 and aquaporin-1 . In Vitro Cell.Dev.Biol.-Animal 45, 62–68 (2009). https://doi.org/10.1007/s11626-008-9151-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-008-9151-8

Keywords

Navigation