Skip to main content
Log in

The effects of unsaturated fatty acids on lipid metabolism in HepG2 cells

  • Report
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

We investigated the effects of stearic acid (saturated), oleic acid (monounsaturated), linoleic acid (n−6 polyunsaturated), and α-linolenic acid (n−3 polyunsaturated) on lipid metabolism in a hepatocyte-derived cell line, HepG2. HepG2 cells were cultured in medium supplemented with either stearic acid (0.1% w/v), oleic acid (0.1% v/v), linoleic acid (0.1% v/v), or α-linolenic acid (0.1% v/v). After 24 h, expression of lipid metabolism-associated genes was evaluated by real-time PCR. α-Linolenic acid showed a suppressive effect on the hepatic fatty acid de novo synthesis and fatty acid oxidation pathways, while linoleic acid also showed a tendency to suppress these pathways although the effect was weaker. Moreover, α-linolenic acid enhanced the expression of enzymes associated with reactive oxygen species (ROS) elimination. In contrast, oleic acid tended to promote fatty acid synthesis and oxidation. In conclusion, α-linolenic acid and linoleic acid may be expected to ameliorate hepatic steatosis by downregulating fatty acid de novo synthesis and fatty acid oxidation, and by upregulating ROS elimination enzymes. Oleic acid had no distinct effects for improving steatosis or oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.

Similar content being viewed by others

References

  • Bucher H. C.; Hengstler P.; Schindler C.; Meier G. N−3 polyunsaturated fatty acids in coronary heart disease: a meta-analysis of randomized controlled study. Am J Med. 112: 298–304; 2002. doi:10.1016/S0002-9343(01)01114-7.

    Article  PubMed  CAS  Google Scholar 

  • Burdge G. C. Metabolism of α-linolenic acid in humans. Prostaglandins Leukotrienes Essential Fatty Acids.161–168; 2006. doi:10.1016/j.plefa.2006.05.013.

  • El-Badry A. M.; Graf R.; Clavien P.-A. Omega 3–omega 6: what is right for the liverJ Hepatol.: 47: 718–725; 2007. doi:10.1016/j.jhep.2007.08.005.

    Article  PubMed  CAS  Google Scholar 

  • Fujimoto Y.; Onoduka J.; Homma K. J. et al. Long-chain fatty acids induce lipid droplet formation in a cultured human hepatocyte in a manner dependent of Acyl-CoA synthetase. Biol Pharm Bull. 29: 2174–2180; 2006. doi:10.1248/bpb.29.2174.

    Article  PubMed  CAS  Google Scholar 

  • Ghafoorunissa I. A.; Rajkumar L.; Acharya V. Dietary (n−3) long chain polyunsaturated fatty acids prevent sucrose-induced insulin resistance in rats. J Nutr. 135: 2634–2638; 2005.

    PubMed  CAS  Google Scholar 

  • Javadi M.; Geelen M. J.; Lemmens A. G. et al. The influence of dietary linoleic and alpha-linolenic acid on body composition and the activities of key enzymes of hepatic lipogenesis and fatty acid oxidation in mice.. J Anim Physiol Anim Nutr. 91: 11–18; 2007. doi:10.1111/j.1439-0396.2006.00636.x.

    Article  CAS  Google Scholar 

  • Kohjima M.; Enjoji M.; Higuchi N. et al. Re-evaluation of fatty acid metabolism-related gene expression in non-alcoholic fatty liver disease. Int J Mol Med. 20: 351–358; 2007.

    PubMed  CAS  Google Scholar 

  • Levy J. R.; Clore J. N.; Stevens W. Dietary n−3 poly unsaturated fatty acids decrease hepatic triglycerides in Fischer 344 rats. Hepatology. 39: 608–616; 2004. doi:10.1002/hep.20093.

    Article  PubMed  CAS  Google Scholar 

  • Murase T.; Aoki M.; Tokimitsu I. Supplementation with α-linolenic acid-rich diacylglycerol suppresses fatty liver formation accompanied by an up-regulation of oxidation in Zucker fatty rats. Biochim Biophys Acta. 1733: 224–231; 2005.

    PubMed  CAS  Google Scholar 

  • Sanyal A. J.; Campbell-Sargent C.; Mirshahi F. et al. Nonalcoholic steatohepatitis: association of insulin resistance and mitochondrial abnormalities. Gastroenterology. 120: 1183–1192; 2001. doi:10.1053/gast.2001.23256.

    Article  PubMed  CAS  Google Scholar 

  • Schmocker C.; Weylandt K. H.; Kahlke L. et al. Omega-3 fatty acids alleviate chemically induced acute hepatitis by suppression of cytokines. Hepatology. 45: 864–869; 2007. doi:10.1002/hep.21626.

    Article  PubMed  CAS  Google Scholar 

  • Sekiya M.; Yahagi N.; Matsuzaka T. et al. Polyunsaturated fatty acids ameliorate hepatic steatosis in obese mice by SREBP-1 suppression. Hepatology. 39: 608–616; 2003.

    Google Scholar 

  • Stulnig T. M. Immunomodulation by polyunsaturated fatty acids; mechanisms and effects. Int Arch Allergy immunol. 132: 310–321; 2003. doi:10.1159/000074898.

    Article  PubMed  CAS  Google Scholar 

  • Svegliati-Baroni G.; Candelaresi C.; Saccomanno S. et al. A model of insulin resistance and nonalcoholic steatohepatitis in rats. Role of peroxisome proliferators-activated receptor-α and n−3 polyunsaturated fatty acid treatment on liver injury. Am J Pathol. 169: 846–860; 2006. doi:10.2353/ajpath.2006.050953.

    Article  PubMed  CAS  Google Scholar 

  • Teran-Garcia M.; Adamson A. W.; Yu G. et al. Polyunsaturated fatty acids suppression by fatty acid synthase (FASN): evidence for dietary modulation of NF-Y binding to the Fasn promoter by SREBP-1c. Biochem J. 402: 591–600; 2007. doi:10.1042/BJ20061722.

    Article  PubMed  CAS  Google Scholar 

  • Vinciguerra M.; Veyrat-Durebex C.; Moukil M. A. et al. PTEN down-regulation by unsaturated fatty acids triggers hepatic steatosis via an NFκBp65/mTOR-dependent mechanism. Gastroenterology. 134: 268–280; 2008. doi:10.1053/j.gastro.2007.10.010.

    Article  PubMed  CAS  Google Scholar 

  • Wendland E.; Farmer A.; Glasziou P.; Neil A. Effect of linolenic acid on cardiovascular risk markers: a systematic review. Heart. 92: 166–169; 2006. doi:10.1136/hrt.2004.053538.

    Article  PubMed  CAS  Google Scholar 

  • Yahagi N.; Shimano H.; Hasty A. H. et al. Absence of sterol regulatory element-binding protein-1 (SREBP-1) ameliorates fatty livers but not obesity or insulin resistance in Lep(ob)/Lep(ob) mice. J Biol Chem. 277: 19353–19357; 2002. doi:10.1074/jbc.M201584200.

    Article  PubMed  CAS  Google Scholar 

  • Yu-Poth S.; Yin D.; Kris-Etherton P. M. et al. Long-chain polyunsaturated fatty acids upregulate LDL receptor protein expression in fibroblasts and HepG2 cells. J Nutr. 135: 2541–2545; 2005.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the research fund of the Daiwa Securities Health Foundation (Japan), Clinical Research Foundation (Japan), and Institute of Kampo Medicine (Japan).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Munechika Enjoji.

Additional information

Editor: J. Denry Sato

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kohjima, M., Enjoji, M., Higuchi, N. et al. The effects of unsaturated fatty acids on lipid metabolism in HepG2 cells. In Vitro Cell.Dev.Biol.-Animal 45, 6–9 (2009). https://doi.org/10.1007/s11626-008-9144-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-008-9144-7

Keywords

Navigation