Skip to main content
Log in

Attempts at immortalization of crustacean primary cell cultures using human cancer genes

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

Primary cell cultures from crustacea have been initiated since the 1960s, yet no permanent cell line is available. Primary cells have a limited proliferative capacity in culture due to cellular senescence, which is regulated by a group of dominant senescence genes. The aim of this research was to manipulate cell cycle regulation by transfecting Cherax quadricarinatus primary cells with oncogenes, in an effort to induce a permanent cell line. Human papillomaviruses (HPV) play a critical role in the formation of anogenital cancer. Research has demonstrated that the HPV-expressed E6 and E7 proteins function concomitantly to disrupt the p53 and retinoblastoma (Rb) tumor suppressor genes, regulators of the cell-cycle checkpoints at the first gap (G1) phase. HPV E6 and E7 genes were transfected into the C. quadricarinatus cells by lipofection. Successful transfection was demonstrated by the presence of oncogene messenger RNA by reverse transciptase polymerase chain reaction. At day 150, transfected cells still remain viable, although cell proliferation was stagnant. It may be that while transfection of the oncogenes was successful, no proliferation of the C. quadricarinatus cells was evident due to a lack of telomere maintenance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.

Similar content being viewed by others

References

  • Bodnar, A. G.; Ouellette, M.; Frolkis, M.; Holt, S. E.; Chiu, C. -P.; Morin, G. B.; Harley, C. B.; Shay, J. W.; Lichtsteiner, S.; Wright, W. E. Extension of life-span by introduction of telomerase into normal human cells. Science 2795349: 349–352; 1998. doi:10.1126/science.279.5349.349.

    Article  PubMed  CAS  Google Scholar 

  • Boyer, S. N.; Wazer, D. E.; Band, V. E7 protein of human papilloma virus-16 induces degradation of retinoblastoma protein through the ubiquitin–proteasome pathway. Cancer Res. 5620: 4620–4624; 1996.

    PubMed  CAS  Google Scholar 

  • Brodsky, J. L.; Pipas, J. M. Polyomavirus T antigens: molecular chaperones for multiprotein complexes. J. Virol. 727: 5329–5334; 1998.

    PubMed  CAS  Google Scholar 

  • Chen, W. -H.; Lai, W. -F.; Deng, W. -P.; Yang, W. K.; Lo, W. -C.; Wu, C. -C.; Yang, D. -M.; Lai, M. -T.; Lin, C. -T.; Lin, T. -W.; Yang, C. -B. Tissue engineered cartilage using human articular chondrocytes immortalized by HPV-16 E6 and E7 genes. J. Biomed. Res. 76A3: 512–520; 2006. doi:10.1002/jbm.a.30560.

    Article  CAS  Google Scholar 

  • Colgin, L. M.; Reddel, R. R. Telomere maintenance mechanisms and cellular immortalization. Curr. Opin. Genet. Dev. 91: 97–103; 1999. doi:10.1016/S0959-437X(99)80014-8.

    Article  PubMed  CAS  Google Scholar 

  • Crane, M. J. Mutagenesis and cell transformation in cell culture. Method Cell. Sci. 214: 245–253; 1999. doi:10.1023/A:1009861505170.

    Article  CAS  Google Scholar 

  • Crane, M. J., Williams, L. M. Development of continuous prawn cell lines for virus isolation and cultivation. Fisheries Research & Development Corporation. Ed. Geelong, CSIRO Livestock Industries; 2002.

  • Defilippis, R. A.; Goodwin, E. C.; Wu, L.; Dimaio, D. Endogenous human papillomavirus E6 and E7 proteins differentially regulate proliferation, senescence and apoptosis in HeLa cervical carcinoma cells. J. Virol. 772: 1551–1563; 2003. doi:10.1128/JVI.77.2.1551-1563.2003.

    Article  PubMed  CAS  Google Scholar 

  • Edgerton, B.; Owens, L. Age at first infection of Cherax quadricarinatus by Cherax quadricarinatus bacilliform virus and Cherax giardiavirus-like virus, and production of putative virus-free crayfish. Aquaculture 1521–4: 1–12; 1997. doi:10.1016/S0044-8486(97)00006-9.

    Article  Google Scholar 

  • FAO The state of world aquaculture. FAO Fish. Tech. Pap. 500: 1–134; 2006.

    Google Scholar 

  • Freshney, R. I. Culture of animal cells: A manual of basic techniques. Wiley-Liss, New York2000.

    Google Scholar 

  • Goodwin, E. C.; Yang, E.; Lee, C. J.; Lee, H. W.; Dimaio, D.; Hwang, E. S. Rapid induction of senescence in human cervical carcinoma cells. Proc. Natl. Acad. Sci. U. S. A. 9720: 10978–10983; 2000. doi:10.1073/pnas.97.20.10978.

    Article  PubMed  CAS  Google Scholar 

  • Ha, P. K.; Califano, J. A. The role of human papillomavirus in oral carcinogenesis. Crit. Rev. Oral Biol. M. 154: 188–196; 2004.

    Article  Google Scholar 

  • Halbert, C. L.; Demers, G. W.; Galloway, D. A. The E7 gene of human papillomavirus type 16 is sufficient for immortalization of human epithelial cells. J. Virol. 651: 473–478; 1991.

    PubMed  CAS  Google Scholar 

  • Harms, W.; Rothamel, T.; Miller, K.; Harste, G.; Grassmann, M.; Heim, A. Characterization of human myocardial fibroblasts immortalized by HPV16 E6–E7 genes. Exp. Cell Res. 2682: 252–261; 2001. doi:10.1006/excr.2001.5274.

    Article  PubMed  CAS  Google Scholar 

  • Hollstein, M.; Sidransky, D.; Vogelstein, B.; Harris, C. C. p53 mutations in human cancers. Science 2535015: 49–53; 1991. doi:10.1126/science.1905840.

    Article  PubMed  CAS  Google Scholar 

  • Huschtscha, L. I.; Holliday, R. Limited and unlimited growth of SV40-transformed cells from human diploid MRC-5 fibroblasts. J. Cell. Sci. 631: 77–99; 1983.

    PubMed  CAS  Google Scholar 

  • Kingsley, K.; Johnson, D.; O’malley, S. Transfection of oral squamous cell carcinoma with human papillomavirus-16 induces proliferative and morphological changes in vitro. Cancer Cell. Int. 61: 14–25; 2006. doi:10.1186/1475-2867-6-14.

    Article  PubMed  CAS  Google Scholar 

  • Ko, L. J.; Prives, C. p53: puzzle and paradigm. Genes Dev. 109: 1054–1072; 1996. doi:10.1101/gad.10.9.1054.

    Article  PubMed  CAS  Google Scholar 

  • Lang, G. -H.; Wang, Y.; Nomura, N.; Matsumara, M. Detection of telomerase activity in tissues and primary cultured lymphoid cells of Penaeus japonicus. Mar. Biotechnol. 64: 347–354; 2004. doi:10.1007/s10126-003-0038-0.

    Article  PubMed  CAS  Google Scholar 

  • Levine, A. J. p53, the cellular gatekeeper for growth and division. Cell 883: 323–331; 1997. doi:10.1016/S0092-8674(00)81871-1.

    Article  PubMed  CAS  Google Scholar 

  • Macdonald, C. Development of new cell lines for animal cell biotechnology. Crit. Rev. Biotechnol. 102: 155–178; 1990. doi:10.3109/07388559009068265.

    Article  PubMed  CAS  Google Scholar 

  • O’Brien, V. Viruses and apoptosis. J. Gen. Virol. 798: 1833–1845; 1998.

    PubMed  CAS  Google Scholar 

  • Perez-Reyes, N.; Halbert, C. L.; Smith, P. P.; Benditt, E. P.; Mcdougall, J. K. Immortalisation of primary human smooth muscle cells. Proc. Natl. Acad. Sci. U. S. A. 894: 1224–1228; 1992. doi:10.1073/pnas.89.4.1224.

    Article  PubMed  CAS  Google Scholar 

  • Putral, L. N.; Bywater, M. J.; Gu, W.; Saunders, N. A.; Gabrielli, B. G.; Leggatt, G. R.; Mcmillan, N. A. J. RNA interference against human papillomavirus oncogenes in cervical cancer cells results in increased sensitivity to cisplatin. Mol. Pharmacol. 685: 1311–1319; 2005. doi:10.1124/mol.105.014191.

    Article  PubMed  CAS  Google Scholar 

  • Ratner, L.; Josephs, S. F.; Wong-Staal, F. Oncogenes: their role in neoplastic transformation. Annu. Rev. Microbiol. 391: 419–449; 1985. doi:10.1146/annurev.mi.39.100185.002223.

    Article  PubMed  CAS  Google Scholar 

  • Sager, R. Tumor suppressor genes in the cell cycle. Curr. Opin. Cell Biol. 42: 155–160; 1992. doi:10.1016/0955-0674(92)90026-9.

    Article  PubMed  CAS  Google Scholar 

  • Sasaki, M.; Honda, T.; Yamada, H.; Wake, N.; Barrett, J. C. Evidence for multiple pathways to cellular senescence. Cancer Res. 5423: 6090–6093; 1994.

    PubMed  CAS  Google Scholar 

  • Scheffner, M.; Werness, B. A.; Huibregtse, J. M.; Levine, A. J.; Howley, P. M. The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell 636: 1129–1136; 1990. doi:10.1016/0092-8674(90)90409-8.

    Article  PubMed  CAS  Google Scholar 

  • Shay, J. W.; Wright, W. E.; Brasiskyte, D.; Van Der Haegen, B. A. E6 of human papillomavirus type 16 can overcome the M1 stage of immortalisation in human mammary epithelial cells but not in human fibroblasts. Oncogene 86: 1407–1413; 1993.

    PubMed  CAS  Google Scholar 

  • Shiga, T.; Sharasawa, H.; Shimizu, K.; Dezawa, M.; Masuda, Y.; Simizu, B. Normal human fibroblasts immortalised by introduction of human papillomavirus type 16 (HPV-16) E6–E7 genes. Microbiol. Immunol. 414: 313–319; 1997.

    PubMed  CAS  Google Scholar 

  • Spann, K. M.; Lester, R. J. G. Viral diseases of penaeid shrimp with particular reference to four viruses recently found in shrimp from Queensland. World J. Microb. Biotechnol. 131: 419–426; 1997. doi:10.1023/A:1018576200670.

    Article  Google Scholar 

  • Strachan, T.; Read, A. P. Human molecular genetics, 2nd ed. Wiley, New York; 1999.

    Google Scholar 

  • Tapay, L. M.; Lu, Y.; Brock, J. A.; Nadala, E. C.; Loh, P. C. Transformation of primary culture of shrimp (Penaeus stylirostris) lymphoid (Oka) organ with Simian virus-40 (T) antigen. Proc. Soc. Exp. Biol. Med. 2091: 73–78; 1995.

    PubMed  CAS  Google Scholar 

  • Teodoro, J. G.; Branton, P. E. Regulation of apoptosis by viral gene products. J. Virol. 713: 1739–1746; 1997.

    PubMed  CAS  Google Scholar 

  • Villena, A. J. Applications and needs of fish and shellfish cell culture for disease control in aquaculture. Rev. Fish Biol. Fish 131: 111–140; 2003. doi:10.1023/A:1026304212673.

    Article  Google Scholar 

  • Wazer, D. E.; Liu, X. -L.; Chu, Q.; Gao, Q.; Band, V. Immortalization of distinct human mammary epithelial cell types by human papilloma virus 16 E6 or E7. Proc. Natl. Acad. Sci. U. S. A. 929: 3687–3691; 1995. doi:10.1073/pnas.92.9.3687.

    Article  PubMed  CAS  Google Scholar 

  • Werness, B. A.; Levine, A. J.; Howley, P. M. Association of human papillomavirus types 16 and 18 E6 proteins with p53. Science 2484951: 76–79; 1990. doi:10.1126/science.2157286.

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto, A.; Kumakura, S.; Uchida, M.; Barrett, J. C.; Tsutsui, T. Immortalization of normal human embryonic fibroblasts by introduction of either the human papillomavirus type 16 E6 or E7 gene alone. Int. J. Cancer 1063: 301–309; 2003. doi:10.1002/ijc.11219.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

We thank Dr. Germain Fernando (CICR Princess Alexandra Hospital, Brisbane, Australia) for kindly providing the vectors containing the human papillomavirus-16 oncogenes E6 and E7.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kerry Claydon.

Additional information

Editor: J. Denry Sato

Rights and permissions

Reprints and permissions

About this article

Cite this article

Claydon, K., Owens, L. Attempts at immortalization of crustacean primary cell cultures using human cancer genes. In Vitro Cell.Dev.Biol.-Animal 44, 451–457 (2008). https://doi.org/10.1007/s11626-008-9141-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-008-9141-x

Keywords

Navigation