Skip to main content
Log in

Identification of functional markers in a self-assembled skin substitute in vitro

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

Some functional parameters were identified and assessed in a tissue-engineered self-assembled skin substitute. This skin substitute was produced using fibroblasts and keratinocytes isolated from adult human skin. Keratinocytes were seeded on a dermal layer, composed of two fibroblast sheets cultured for 35 d. The epidermal cells formed a stratified and cornified epidermis and expressed differentiation markers, notably involucrin and transglutaminase. Interestingly and for the first time, the receptor for vitamin D3 was detected in all of the epidermal cell layers of the skin substitute, as it is reported for normal human skin. This observation suggests that keratinocytes retain key receptors during their differentiation in the skin model. A network of collagen fibers was observed by electron microscopy in the dermal layer of the model. In the dermis, collagen fibers remodeling and assembly is dependent on enzymes, notably prolyl-4-hydroxylase. For the first time in a skin construct, the expression of prolyl-4-hydroxylase was detected in dermal fibroblasts by in situ hybridization. The secretion of collagenases by the cells seeded in our skin substitute was confirmed by zymography. We conclude that the self-assembly approach allows the maintenance of several functional activities of human skin cells in a skin model in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.

Similar content being viewed by others

References

  • Auger F. A.; López Valle C. A.; Guignard R.; Tremblay N.; Noël B.; Goulet F.; Germain L. Skin equivalents produced using human collagen. In Vitro Cell. Dev. Biol. Anim 31: 432–439; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Auger F. A.; Pouliot R.; Tremblay N.; Guignard R.; Noël P.; Juhasz J.; Germain L.; Goulet F. Multistep production of bioengineered skin substitutes: sequential modulation of culture conditions. In Vitro Cell. Dev. Biol. Anim 36: 96–103; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Bell E.; Ivarsson B.; Merrill C. Production of a tissue-like structure by contraction of collagen lattices by human fibroblasts of different proliferative potential in vitro. Proc. Natl. Acad. Sci. (U.S.A) 76: 1274–1278; 1979.

    Article  CAS  Google Scholar 

  • Bellemare J.; Roberge C. J.; Bergeron D.; Lopez-Vallé C. A.; Roy M.; Moulin V. J. Epidermis promotes dermal fibrosis: role in the pathogenesis of hypertrophic scars. J. Pathol 206: 1–8; 2005.

    Article  PubMed  Google Scholar 

  • Black A. F.; Berthod F.; L’Heureux N.; Germain L.; Auger F. A. In vitro reconstruction of a human capillary-like network in a tissue-engineered skin equivalent. FASEB. J 12: 1331–1340; 1998.

    PubMed  CAS  Google Scholar 

  • Boyce S. T.; Foreman T. J.; English K. B.; Stayner N.; Cooper M. L.; Sakabu S.; Hansbrough J. F. Skin wound closure in athymic mice with cultured human cells, biopolymers, and growth factors. Surgery 110: 866–876; 1991.

    PubMed  CAS  Google Scholar 

  • Chan D.; Lamande S. B.; Cole W. G.; Bateman J. F. Regulation of procollagen synthesis and processing during ascorbate-induced extracellular matrix accumulation in vitro. Biochem. J 269: 175–181; 1990.

    PubMed  CAS  Google Scholar 

  • Contard P.; Bartel R. L.; Jacobs L. II; Perlish J. S.; McDonald E. D. II; Handler L.; Cone D.; Fleishmajer R. Culturing keratinocytes and fibroblasts in a three-dimensional mesh results in epidermal differentiation and formation of a basal lamina-anchoring zone. J. Invest. Dermatol 100: 35–39; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Dale B. A.; Resing K. A.; Presland B. B. Keratohyalin granule proteins. In: Leigh I.; Lane B.; Watt E. (eds) The keratinocyte handbook. Cambridge University Press., New York, pp 323–350; 1994.

    Google Scholar 

  • Exbrayat J. M. Nuclear dyes. In: Morel G. (ed) Genome Visualization by Classic methods in light microscopy. CRC press., Boca Raton, pp 59–62; 2000.

    Google Scholar 

  • Franz T. J. Percutaneous absorption. On the relevance of in vitro data. J. Invest. Dermatol 64: 190–195; 1975.

    Article  PubMed  CAS  Google Scholar 

  • Germain L.; Rouabhia M.; Guignard B.; Carrier L.; Bouvard V.; Auger F. A. Improvement of human keratinocyte isolation and culture using thermolysin. Burns 2: 99–104; 1993.

    Article  Google Scholar 

  • Green H.; Kehinde O.; Thomas J. Growth of cultured human epidermal cells into multiple epithelia suitable for grafting. Proc. Natl. Acad. Sci. (USA) 76: 5665–5668; 1979.

    Article  CAS  Google Scholar 

  • Hansbrough J. F.; Boyce S. T.; Cooper M. L.; Foreman T. J. Burn wound closure with cultured autologous keratinocytes and fibroblasts attached to a collagen-glycosaminoglycan substrate. JAMA 262: 2125–2130; 1989.

    Article  PubMed  CAS  Google Scholar 

  • Heussen C.; Dowdle E. B. Electrophoretic analysis of plasminogen activators in polyacrylamide gels containing sodium dodecyl sulfate and copolymerized substrates. Anal. Biochem 102: 196–202; 1980.

    Article  PubMed  CAS  Google Scholar 

  • Holick M. F. Vitamin D: A millenium perspective. J. Cell. Biochem 88: 296–307; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Islam N.; Poitras L.; Moss T. The cytoskeletal effector xPAK1 is expressed during both ear and lateral line development in Xenopus. Int. J. Dev. Biol 44: 245–248; 2000.

    PubMed  CAS  Google Scholar 

  • Kivirikko K. I.; Myllyharju J. Prolyl 4-hydroxylases and their protein disulfide isomerase subunit. Matrix. Biol 16: 357–68; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Kong J.; Li X. J.; Gavin D.; Jiang Y.; Li Y. C. Targeted expression of human vitamin D receptor in the skin promotes the initiation of the postnatal hair follicle cycle and rescues the alopecia in vitamin D receptor null mice. J. Invest. Dermatol 118: 631–638; 2002.

    Article  PubMed  CAS  Google Scholar 

  • López Valle C. A.; Auger F. A.; Rompré P.; Bouvard V.; Germain L. Peripheral anchorage of dermal equivalents. Br. J. Dermatol 127: 365–371; 1992.

    Article  PubMed  Google Scholar 

  • Mak V. H. W.; Cumpstone M. B.; Kennedy A. H.; Harmon C. S.; Guy R. H.; Potts R. O. Barrier function of human keratinocyte cultures grown at the air-liquid interface. J. Invest. Dermatol 96: 323–327; 1991.

    Article  PubMed  CAS  Google Scholar 

  • Milde P.; Hauser U.; Simon T.; Mall G.; Ernst V.; Haussler M. R.; Frosch P.; Rauterberg E. W. Expression of 1,25-dihydroxyvitamin D3 receptors in normal and psoriatic skin. J. Invest. Dermatol 97: 230–239; 1991.

    Article  PubMed  CAS  Google Scholar 

  • Michel M.; L’Heureux N.; Pouliot R.; Xu W.; Auger F. A.; Germain L. Characterization of a new tissue-engineered human skin equivalent with hair. In Vitro Cell. Dev. Biol.-Animal 35: 318–326; 1999.

    Article  CAS  Google Scholar 

  • Murad S.; Tajima S.; Johnson G. R.; Sivarajah A.; Pinell S. R. Collagen synthesis in cultured human skin fibroblasts: effect of ascorbic acid and its analogs. J. Invest. Dermatol 81: 158–162; 1983.

    Article  PubMed  CAS  Google Scholar 

  • Oikarinen A.; Kylmäniemi M.; Autio-Harmainen H.; Autio P.; Salo T. Demonstration of 72-kDa and 92-kDa forms of type IV collagenase in human skin: variable expression in various blistering diseases, induction during re-epithelialization, and decrease by topical glucocorticoids. J. Invest. Dermatol 101: 205–210; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Pinette K. V.; Yee Y. K.; Amegadzie B. Y.; Nagpal S. Vitamin D receptor as a drug discovery target. Mini. Rev. Med. Chem 3: 193–204; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Ponec M. Reconstruction of human epidermis on de-epidermized dermis: Expression of differentiation-specific protein markers and lipid composition. Toxic. In Vitro 5: 597–606; 1991.

    Article  CAS  Google Scholar 

  • Régnier M.; Pruniéras M.; Woodley D. M. Growth and differentiation of adult human epidermal cells on dermal substrates. Front. Matrix. Biol 9: 4–35; 1981.

    Google Scholar 

  • Shahabeddin L.; Berthod F.; Damour O.; Collombel C. Characterization of skin reconstructed on a chitosan-cross-linked collagen–glycosaminoglycan matrix. Skin Pharmacol 3: 107–14; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Slivka S. R.; Landeen L. K.; Zeigler F.; Zimber M. P.; Bartel R. L. Characterization, barrier function, and drug metabolism of an in vitro skin model. J. Invest. Dermatol 100: 40–46; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Tinois E.; Tiollier J.; Gaucherand M.; Dumas H.; Tardy M.; Thivolet J. In vitro and post-transplantation differentiation of human keratinocytes grown on the human Type IV collagen film of a bilayered dermal substitute. Exp. Cell. Res 193: 310–319; 1991.

    Article  PubMed  CAS  Google Scholar 

  • Tzaneva S.; Honigsmann H.; Tanew A. Observer-blind, randomized, intrapatient comparison of a novel 1% coal tar preparation (Exorex) and calcipotriol cream in the treatment of plaque type psoriasis. Br. J. Dermatol 149: 350–353; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Xie Z.; Komuves L.; Yu Q. C.; Elalieh H.; Ng D. C.; Leary C.; Chang S.; Crumrine D.; Yoshizawa T.; Kato S.; Bikle D. D. Lack of the vitamin D receptor is associated with reduced epidermal differentiation and hair follicle growth. J. Invest. Dermatol 118: 11–16; 2002.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Alexandre Deschambeault for his photographic assistance. This work was supported by the Canadian Institutes of Health Research/CIHR (no. 49478, F. Goulet; no. 12087, L. Germain), the Canada Foundation for Innovation/CFI, the Fonds de la Recherche en Santé du Québec (FRSQ) and the Régie régionale de la santé et des services sociaux du Québec (F. Goulet, N. Islam et al). B. Cvetkovska was recipient of a fellowship from Parke-Davis Cie (USA) and from the department of Pharmacy of Université Laval. L. Germain is recipient of the Canadian Research Chair from CIHR on stem cells and tissue engineering. F. Goulet is recipient of a Career Award from The Arthritis Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucie Germain.

Additional information

Editor: J. Denry Sato

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cvetkovska, B., Islam, N., Goulet, F. et al. Identification of functional markers in a self-assembled skin substitute in vitro. In Vitro Cell.Dev.Biol.-Animal 44, 444–450 (2008). https://doi.org/10.1007/s11626-008-9140-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-008-9140-y

Keywords

Navigation