Bioactive recombinant human lactoferrin, derived from rice, stimulates mammalian cell growth


Today there is a concern about the use of animal source proteins and peptides in cell culture applications due to potential contamination by adventitious infectious pathogens. Recombinant production of these proteins using a plant host provides a safe and cost effective alternative. In this paper, we tested the effect of rice-derived recombinant human lactoferrin (rhLF) on mammalian cell growth. The purified rhLF was partially (about 50%) iron-saturated (pis-rhLF). Chemical modification of pis-rhLF generated apo-rhLF (<10% iron saturation) or holo-rhLF (>90% iron saturation). All three forms of rhLF (pis, apo, holo) promoted growth of intestinal cells (HT-29) measured as [3H]-thymidine incorporation or viable cell count, but holo-rhLF was most effective. Holo-rhLF was further tested on hybridoma, osteoblast, and human embryonic kidney cells. Results showed that holo-rhLF promoted cell growth and reduced cell doubling time. The concentration of holo-rhLF in media was critical in promoting cell growth and each cell line had different concentration dependence with the most effective range from 5 to 200 mg/L. The effect of rhLF on antibody production was determined using a hybridoma cell line. Significantly, more antibodies were produced by cells grown with holo-rhLF than cells grown without holo-rhLF. We also compared the effect of holo-rhLF to that of human transferrin, a component commonly used in cell culture media as an iron source. Holo-rhLF was as effective as human transferrin in promoting cell growth and antibody production. Considering all the data obtained, we conclude that rhLF from rice is effective in promoting mammalian cell growth and increasing cell productivity.

This is a preview of subscription content, log in to check access.

Figure 1
Figure 2
Figure 3
Figure 4


  1. Amouric M.; Marvaldi J.; Pichon J.; Bellot F.; Figarella C. Effect of lactoferrin on the growth of a human colon adenocarcinoma cell line—comparison with transferrin. In Vitro 20: 543–548; 1984. doi:10.1007/BF02639770.

    PubMed  Article  CAS  Google Scholar 

  2. Azuma N.; Mori H.; Kaminogaea S.; Yamauchi K. Stimulatory effect of human lactoferrin on DNA synthesis in BALB/c 3T3 cells. Agric Biol Chem 53: 31–35; 1989.

    CAS  Google Scholar 

  3. Baumrucker C. R.; Schanbacher F.; Shang Y.; Green M. H. Lactoferrin interaction with retinoid signaling: cell growth and apoptosis in mammary cells. Domest Anim Endocrinol 30: 289–303; 2005. doi:10.1016/j.domaniend.2005.07.009.

    PubMed  Article  CAS  Google Scholar 

  4. Cornish J.; Callon K. E.; Naot D.; Palmano K. P.; Banovic T.; Bava U.; Watson M.; Lin J. M.; Tong P. C.; Chen Q.; Chan V. A.; Reid H. E.; Fazzalari N.; Baker H. M.; Baker E. N.; Haggarty N. W.; Grey A. B.; Reid I. R. Lactoferrin is a potent regulator of bone cell activity and increases bone formation in vivo. Endocrinology 145: 4366–4374; 2004. doi:10.1210/en.2003-1307.

    PubMed  Article  CAS  Google Scholar 

  5. Grey A.; Banovic T.; Zhu Q.; Watson M.; Callon K.; Palmano K.; Ross J.; Naot D.; Reid I. R.; Cornish J. The low-density lipoprotein receptor-related protein 1 is a mitogenic receptor for lactoferrin in osteoblastic cells. Mol Endocrinol 18: 2268–2278; 2004. doi:10.1210/me.2003-0456.

    PubMed  Article  CAS  Google Scholar 

  6. Hagiwara T.; Shinoda I.; Fukuwatari Y.; Shimamura S. Effects of lactoferrin and its peptides on proliferation of rat intestinal epithelial cell line IEC-18, in the presence of epidermal growth factor. Biosci Biotechnol Biochem 59: 1875–1881; 1995.

    PubMed  CAS  Google Scholar 

  7. Hashizume S.; Kuroda K.; Murakami H. Identification of lactoferrin as an essential growth factor for human lymphocytic cell lines in serum-free medium. Biochim Biophys Acta 763: 377–382; 1983. doi:10.1016/0167-4889(83)90099-X.

    PubMed  Article  CAS  Google Scholar 

  8. Hurley W. L.; Hegarty H. M.; Metzler J. T. In vitro inhibition of mammary cell growth by lactoferrin: a comparative study. Life Sci 55: 1955–1963; 1994. doi:10.1016/0024-3205(94)00528-1.

    PubMed  Article  CAS  Google Scholar 

  9. Kohno Y.; Shiraki K.; Mura T.; Ikawa S. Iron-saturated lactoferrin as a co-mitogenic substance for neonatal rat hepatocytes in primary culture. Acta Paediatr 82: 650–655; 1993.

    PubMed  CAS  Google Scholar 

  10. Kovar J.; Franek F. Hybridoma cultivation in defined serum-free media: growth-supporting substances. I. Transferrin. Folia Biol (Praha) 31: 167–175; 1985.

    CAS  Google Scholar 

  11. Lonnerdal B.; Iyer S. Lactoferrin: molecular structure and biological function. Annu Rev Nutr 15: 93–110; 1995. doi:10.1146/

    PubMed  Article  CAS  Google Scholar 

  12. Loo D.; Rawson C.; Helmrich A.; Barnes D. Serum-free mouse embryo cells: growth responses in vitro. J Cel Physiol 139: 484–491; 1989. doi:10.1002/jcp.1041390306.

    Article  CAS  Google Scholar 

  13. Nandi S.; Suzuki A.; Huang J.; Yalda D.; Pham P.; Wu L.; Bartley G.; Huang N.; Lonnerdal B. Expression of human lactoferrin in transgenic rice grains for the application in infant formula. Plant Sci 163: 713–722; 2002. doi:10.1016/S0168-9452(02)00165-6.

    Article  CAS  Google Scholar 

  14. Nandi S.; Yalda D.; Lu S.; Nikolov Z.; Misaki R.; Fujiyama K.; Huang N. Process development and economic evaluation of recombinant human lactoferrin expressed in rice grain. Transgenic Res 14: 237–249; 2005. doi:10.1007/s11248-004-8120-6.

    PubMed  Article  CAS  Google Scholar 

  15. Naot D.; Grey A.; Reid I. R.; Cornish J. Lactoferrin—a novel bone growth factor. Clin Med Res 3: 93–101; 2005.

    PubMed  Article  Google Scholar 

  16. Nichols B. L.; McKee K. S.; Henry J. F.; Putman M. Human lactoferrin stimulates thymidine incorporation into DNA of rat crypt cells. Pediatr Res 21: 563–567; 1987. doi:10.1203/00006450-198706000-00011.

    PubMed  Article  CAS  Google Scholar 

  17. Nichols B. L.; McKee K.; Putman M.; Henry J. F.; Nichols V. N. Human lactoferrin supplementation of infant formulas increases thymidine incorporation into the DNA of rat crypt cells. J Pediatr Gastroenterol Nutr 8: 102–109; 1989.

    PubMed  CAS  Article  Google Scholar 

  18. Playford R. J.; Belo A.; Poulsom R.; Fitzgerald A. J.; Harris K.; Pawluczyk I.; Ryon J.; Darby T.; Nilsen-Hamilton M.; Ghosh S.; Marchbank T. Effects of mouse and human lipocalin homologues 24p3/lcn2 and neutrophil gelatinase-associated lipocalin on gastrointestinal mucosal integrity and repair. Gastroenterology 131: 809–817; 2006. doi:10.1053/j.gastro.2006.05.051.

    PubMed  Article  CAS  Google Scholar 

  19. Shinoda I.; Takase M.; Fukuwatari Y.; Shimamura S. Lactoferrin promotes nerve growth factor synthesis/secretion in mouse fibroblast L-M cells. Adv Exp Med Biol 357: 279–285; 1994.

    PubMed  CAS  Google Scholar 

  20. Testa U. Proteins of iron metabolism. CRC, New York; 2002.

    Google Scholar 

  21. Wakabayashi H.; Yamauchi K.; Takase M. Lactoferrin research, technology and applications. Int Dairy J 16: 1241–1251; 2006. doi:10.1016/j.idairyj.2006.06.013.

    Article  CAS  Google Scholar 

  22. Yamada K.; Ikeda I.; Sugahara T.; Hashizume S.; Shirahata S.; Murakami H. Stimulation of proliferation and immunoglobulin M production by lactoferrin in human–human and mouse–mouse hybridomas cultures in serum-free conditions. Cytotechnology 3: 123–131; 1990. doi:10.1007/BF00143674.

    PubMed  Article  CAS  Google Scholar 

  23. Yanaihara A.; Toma Y.; Saito H.; Yanaihara T. Cell proliferation effect of lactoferrin in human endometrial stroma cells. Mol Hum Reprod 6: 469–473; 2000. doi:10.1093/molehr/6.5.469.

    PubMed  Article  CAS  Google Scholar 

Download references


This work was partially supported by a grant from NIH 1 R43 AG026206-01.

Author information



Corresponding author

Correspondence to N. Huang.

Additional information

Editor: J. Denry Sato

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Huang, N., Bethell, D., Card, C. et al. Bioactive recombinant human lactoferrin, derived from rice, stimulates mammalian cell growth. In Vitro Cell.Dev.Biol.-Animal 44, 464–471 (2008).

Download citation


  • Growth factor
  • Growth enhancement
  • Serum-free media
  • Animal-free protein
  • Apoptosis