Bioactive recombinant human lactoferrin, derived from rice, stimulates mammalian cell growth

  • N. HuangEmail author
  • D. Bethell
  • C. Card
  • J. Cornish
  • T. Marchbank
  • D. Wyatt
  • K. Mabery
  • R. Playford


Today there is a concern about the use of animal source proteins and peptides in cell culture applications due to potential contamination by adventitious infectious pathogens. Recombinant production of these proteins using a plant host provides a safe and cost effective alternative. In this paper, we tested the effect of rice-derived recombinant human lactoferrin (rhLF) on mammalian cell growth. The purified rhLF was partially (about 50%) iron-saturated (pis-rhLF). Chemical modification of pis-rhLF generated apo-rhLF (<10% iron saturation) or holo-rhLF (>90% iron saturation). All three forms of rhLF (pis, apo, holo) promoted growth of intestinal cells (HT-29) measured as [3H]-thymidine incorporation or viable cell count, but holo-rhLF was most effective. Holo-rhLF was further tested on hybridoma, osteoblast, and human embryonic kidney cells. Results showed that holo-rhLF promoted cell growth and reduced cell doubling time. The concentration of holo-rhLF in media was critical in promoting cell growth and each cell line had different concentration dependence with the most effective range from 5 to 200 mg/L. The effect of rhLF on antibody production was determined using a hybridoma cell line. Significantly, more antibodies were produced by cells grown with holo-rhLF than cells grown without holo-rhLF. We also compared the effect of holo-rhLF to that of human transferrin, a component commonly used in cell culture media as an iron source. Holo-rhLF was as effective as human transferrin in promoting cell growth and antibody production. Considering all the data obtained, we conclude that rhLF from rice is effective in promoting mammalian cell growth and increasing cell productivity.


Growth factor Growth enhancement Serum-free media Animal-free protein Apoptosis 



This work was partially supported by a grant from NIH 1 R43 AG026206-01.


  1. Amouric M.; Marvaldi J.; Pichon J.; Bellot F.; Figarella C. Effect of lactoferrin on the growth of a human colon adenocarcinoma cell line—comparison with transferrin. In Vitro 20: 543–548; 1984. doi: 10.1007/BF02639770.PubMedCrossRefGoogle Scholar
  2. Azuma N.; Mori H.; Kaminogaea S.; Yamauchi K. Stimulatory effect of human lactoferrin on DNA synthesis in BALB/c 3T3 cells. Agric Biol Chem 53: 31–35; 1989.Google Scholar
  3. Baumrucker C. R.; Schanbacher F.; Shang Y.; Green M. H. Lactoferrin interaction with retinoid signaling: cell growth and apoptosis in mammary cells. Domest Anim Endocrinol 30: 289–303; 2005. doi: 10.1016/j.domaniend.2005.07.009.PubMedCrossRefGoogle Scholar
  4. Cornish J.; Callon K. E.; Naot D.; Palmano K. P.; Banovic T.; Bava U.; Watson M.; Lin J. M.; Tong P. C.; Chen Q.; Chan V. A.; Reid H. E.; Fazzalari N.; Baker H. M.; Baker E. N.; Haggarty N. W.; Grey A. B.; Reid I. R. Lactoferrin is a potent regulator of bone cell activity and increases bone formation in vivo. Endocrinology 145: 4366–4374; 2004. doi: 10.1210/en.2003-1307.PubMedCrossRefGoogle Scholar
  5. Grey A.; Banovic T.; Zhu Q.; Watson M.; Callon K.; Palmano K.; Ross J.; Naot D.; Reid I. R.; Cornish J. The low-density lipoprotein receptor-related protein 1 is a mitogenic receptor for lactoferrin in osteoblastic cells. Mol Endocrinol 18: 2268–2278; 2004. doi: 10.1210/me.2003-0456.PubMedCrossRefGoogle Scholar
  6. Hagiwara T.; Shinoda I.; Fukuwatari Y.; Shimamura S. Effects of lactoferrin and its peptides on proliferation of rat intestinal epithelial cell line IEC-18, in the presence of epidermal growth factor. Biosci Biotechnol Biochem 59: 1875–1881; 1995.PubMedGoogle Scholar
  7. Hashizume S.; Kuroda K.; Murakami H. Identification of lactoferrin as an essential growth factor for human lymphocytic cell lines in serum-free medium. Biochim Biophys Acta 763: 377–382; 1983. doi: 10.1016/0167-4889(83)90099-X.PubMedCrossRefGoogle Scholar
  8. Hurley W. L.; Hegarty H. M.; Metzler J. T. In vitro inhibition of mammary cell growth by lactoferrin: a comparative study. Life Sci 55: 1955–1963; 1994. doi: 10.1016/0024-3205(94)00528-1.PubMedCrossRefGoogle Scholar
  9. Kohno Y.; Shiraki K.; Mura T.; Ikawa S. Iron-saturated lactoferrin as a co-mitogenic substance for neonatal rat hepatocytes in primary culture. Acta Paediatr 82: 650–655; 1993.PubMedGoogle Scholar
  10. Kovar J.; Franek F. Hybridoma cultivation in defined serum-free media: growth-supporting substances. I. Transferrin. Folia Biol (Praha) 31: 167–175; 1985.Google Scholar
  11. Lonnerdal B.; Iyer S. Lactoferrin: molecular structure and biological function. Annu Rev Nutr 15: 93–110; 1995. doi: 10.1146/ Scholar
  12. Loo D.; Rawson C.; Helmrich A.; Barnes D. Serum-free mouse embryo cells: growth responses in vitro. J Cel Physiol 139: 484–491; 1989. doi: 10.1002/jcp.1041390306.CrossRefGoogle Scholar
  13. Nandi S.; Suzuki A.; Huang J.; Yalda D.; Pham P.; Wu L.; Bartley G.; Huang N.; Lonnerdal B. Expression of human lactoferrin in transgenic rice grains for the application in infant formula. Plant Sci 163: 713–722; 2002. doi: 10.1016/S0168-9452(02)00165-6.CrossRefGoogle Scholar
  14. Nandi S.; Yalda D.; Lu S.; Nikolov Z.; Misaki R.; Fujiyama K.; Huang N. Process development and economic evaluation of recombinant human lactoferrin expressed in rice grain. Transgenic Res 14: 237–249; 2005. doi: 10.1007/s11248-004-8120-6.PubMedCrossRefGoogle Scholar
  15. Naot D.; Grey A.; Reid I. R.; Cornish J. Lactoferrin—a novel bone growth factor. Clin Med Res 3: 93–101; 2005.PubMedCrossRefGoogle Scholar
  16. Nichols B. L.; McKee K. S.; Henry J. F.; Putman M. Human lactoferrin stimulates thymidine incorporation into DNA of rat crypt cells. Pediatr Res 21: 563–567; 1987. doi: 10.1203/00006450-198706000-00011.PubMedCrossRefGoogle Scholar
  17. Nichols B. L.; McKee K.; Putman M.; Henry J. F.; Nichols V. N. Human lactoferrin supplementation of infant formulas increases thymidine incorporation into the DNA of rat crypt cells. J Pediatr Gastroenterol Nutr 8: 102–109; 1989.PubMedCrossRefGoogle Scholar
  18. Playford R. J.; Belo A.; Poulsom R.; Fitzgerald A. J.; Harris K.; Pawluczyk I.; Ryon J.; Darby T.; Nilsen-Hamilton M.; Ghosh S.; Marchbank T. Effects of mouse and human lipocalin homologues 24p3/lcn2 and neutrophil gelatinase-associated lipocalin on gastrointestinal mucosal integrity and repair. Gastroenterology 131: 809–817; 2006. doi: 10.1053/j.gastro.2006.05.051.PubMedCrossRefGoogle Scholar
  19. Shinoda I.; Takase M.; Fukuwatari Y.; Shimamura S. Lactoferrin promotes nerve growth factor synthesis/secretion in mouse fibroblast L-M cells. Adv Exp Med Biol 357: 279–285; 1994.PubMedGoogle Scholar
  20. Testa U. Proteins of iron metabolism. CRC, New York; 2002.Google Scholar
  21. Wakabayashi H.; Yamauchi K.; Takase M. Lactoferrin research, technology and applications. Int Dairy J 16: 1241–1251; 2006. doi: 10.1016/j.idairyj.2006.06.013.CrossRefGoogle Scholar
  22. Yamada K.; Ikeda I.; Sugahara T.; Hashizume S.; Shirahata S.; Murakami H. Stimulation of proliferation and immunoglobulin M production by lactoferrin in human–human and mouse–mouse hybridomas cultures in serum-free conditions. Cytotechnology 3: 123–131; 1990. doi: 10.1007/BF00143674.PubMedCrossRefGoogle Scholar
  23. Yanaihara A.; Toma Y.; Saito H.; Yanaihara T. Cell proliferation effect of lactoferrin in human endometrial stroma cells. Mol Hum Reprod 6: 469–473; 2000. doi: 10.1093/molehr/6.5.469.PubMedCrossRefGoogle Scholar

Copyright information

© The Society for In Vitro Biology 2008

Authors and Affiliations

  • N. Huang
    • 1
    Email author
  • D. Bethell
    • 2
  • C. Card
    • 3
  • J. Cornish
    • 4
  • T. Marchbank
    • 5
  • D. Wyatt
    • 6
  • K. Mabery
    • 2
  • R. Playford
    • 5
  1. 1.InVitriaDavisUSA
  2. 2.Ventria BioscienceSacramentoUSA
  3. 3.HyClone IncLoganUSA
  4. 4.Department of MedicineUniversity of AucklandAucklandNew Zealand
  5. 5.Barts & The London Queen Mary’s School of Medicine & DentistryLondonUK
  6. 6.KC BioKansas CityUSA

Personalised recommendations