Summary
The lack of a suitable flat epithelial preparation isolated directly from the freshwater fish gill has led, in recent years, to the development of cultured gill epithelia on semipermeable supports. To date, their minimal capacity to actively transport ions has limited their utility as ionoregulatory models. The current study describes a new method of culturing gill epithelia consisting either of an enriched population of pavement (PV) cells or a mixed population of PV cells and mitochondria-rich (MR) cells from the gills of adult rainbow trout. Although the cell culture approach is similar to the double-seeded insert (DSI) technique described previously, it makes use of Percoll density centrifugation to first separate populations of PV and MR cells, which are then seeded on cell culture supports in varying proportions on successive days so as to produce preparations enriched in one or the other cell types. Based on rhodamine staining, the MR cell-rich epithelia exhibited a threefold higher enrichment of MR cells compared to traditional DSI preparations. In general, MR cell-rich epithelia developed extremely high transepithelial resistances (TER; >30 kΩ cm2) and positive transepithelial potentials (TEP) under symmetrical conditions (i.e., L15 medium on both apical and basolateral sides). Apical exposure of cell cultures to freshwater reduced TER and produced a negative TEP in all the epithelial preparations, although MR cell-rich epithelia maintained relatively high TER and negative TEP for over 2 d under these asymmetrical conditions. Measurement of unidirectional Na+ fluxes and application of the Ussing flux ratio criterion demonstrated active Na+ uptake in PV cell-rich and MR cell-rich epithelia under both symmetrical and asymmetrical conditions. In comparison, Ca2+ uptake and Na+/K+-ATPase activity were significantly elevated in MR cell-rich preparations relative to the traditional DSI or PV cell-rich cultures under symmetrical conditions. This new methodology enhances our ability to tailor cultured gill epithelia on semipermeable supports with different proportions of PV cells and MR cells, thereby illuminating the ionoregulatory functions of the two cell types.
This is a preview of subscription content, access via your institution.





References
Burgess D. W.; Marshall W. S.; Wood C. M. Ionic transport by the opercular epithelia of freshwater acclimated tilapia (Oreochromis niloticus) and killifish (Fundulus heteroclitus). Comp. Biochem. Physiol. A 121: 155–164; 1998. doi:10.1016/S1095-6433(98)10117-4.
Evans D. H.; Piermarini P. M.; Choe K. P. The multifunctional fish gill: dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste. Physiol. Rev. 85: 97–177; 2005. doi:10.1152/physrev.00050.2003.
Fernandes M. N.; Eddy F. B.; Penrice W. S. Primary cell culture from gill explants of rainbow trout. J. Fish Biol. 47: 641–651; 1995. doi:10.1111/j.1095–8649.1995.tb01931.x.
Fletcher M.; Kelly S. P.; Part P.; O’Donnell M. J.; Wood C. M. Transport properties of cultured branchial epithelia from freshwater rainbow trout: a novel preparation with mitochondria-rich cells. J. Exp. Biol. 203: 1523–1537; 2000.
Foskett J. K.; Machen T. E.; Bern H. A. Chloride secretion and conductance of teleost opercular membrane: effects of prolactin. Am. J. Physiol. 242: R380–R369; 1982.
Galvez F.; Reid S. D.; Hawkings G.; Goss G. G. Isolation and characterization of mitochondria-rich cell types from the gill of freshwater rainbow trout. Am. J. Physiol. 282: R658–R668; 2002.
Galvez F.; Wong D.; Wood C. M. Cadmium and calcium uptake in isolated mitochondria-rich cell populations from the gills of the freshwater rainbow trout. Am. J. Physiol. 291: R170–R176; 2006.
Gilmour K. M.; Part P.; Prunet P.; Pisam M.; McDonald D. G.; Wood C. M. Permeability and morphology of a cultured branchial epithelium from the rainbow trout during prolonged apical exposure to fresh water. J. Exp. Zool. 281: 531–545; 1998. doi:10.1002/(SICI)1097-010X(19980815)281:6<531::AID-JEZ1>3.0.CO;2-O.
Goss G. G.; Adamia S.; Galvez F. Peanut lectin binds to a subpopulation of mitochondria-rich cells in the rainbow trout gill epithelium. Am. J. Physiol. 281: R1718–R1725; 2001.
Goss G. G.; Perry S. F.; Fryer J. N.; Laurent P. Gill morphology and acid–base regulation in freshwater fishes. Comp. Biochem. Physiol. A 119: 107–115; 1998.
Goss G. G.; Perry S. F.; Wood C. M.; Laurent P. Mechanisms of ion and acid–base regulation at the gills of freshwater fish. J. Exp. Zool. 263: 143–159; 1992. doi:10.1002/jez.1402630205.
Hwang P.-P.; Lee T.-H. New insights into fish ion regulation and mitochondrion-rich cells. Comp. Biochem. Physiol. A 148: 479–497; 2007. doi:10.1016/j.cbpa.2007.06.416.
Kelly S. P.; Fletcher M.; Part P.; Wood C. M. Procedures for the preparation and culture of ‘reconstructed’ rainbow trout branchial epithelia. Methods Cell. Sci. 22: 153–163; 2000. doi:10.1023/A:1009816923262.
Kelly S. P.; Wood C. M. Effect of cortisol on the physiology of cultured pavement cell epithelia from freshwater trout gills. Am. J. Physiol. 281: R811–R820; 2001a.
Kelly S. P.; Wood C. M. The physiological effects of 3,5¢,3¢-triiodo-L-thyronine alone or combined with cortisol on cultured pavement cell epithelia from freshwater rainbow trout gills. Gen. Comp. Endocrinol. 123: 280–294; 2001b. doi:10.1006/gcen.2001.7679.
Kelly S. P.; Wood C. M. Cultured gill epithelia from freshwater tilapia (Oreochromis niloticus): Effect of cortisol and homologous serum supplements from stressed and unstressed fish. J. Memb. Biol. 190: 29–42; 2002a. doi:10.1007/s00232-002-1020-x.
Kelly S. P.; Wood C. M. Prolactin effects on cultured pavement cell epithelia and pavement cell plus mitochondria-rich cell epithelia from freshwater rainbow trout gills. Gen. Comp. Endocrinol. 128: 44–56; 2002b. doi:10.1016/S0016-6480(02)00048-5.
Kelly S. P.; Wood C. M. Cortisol stimulates calcium transport across cultured gill epithelia from freshwater rainbow trout. In vitro Cell. Dev. Biol.—Anim. 44: 96–104; 2008.
Leguen I.; Cauty C.; Odjo N.; Corlu A.; Pruneta P. Trout gill cells in primary culture on solid and permeable supports. Comp. Biochem. Physiol. A 148: 903–912; 2007. doi:10.1016/j.cbpa.2007.09.007.
Leguen I.; Cravedi J. P.; Pisam M.; Prunet P. Biological functions of trout pavement-like gill cells in primary culture on solid support: pHi regulation, cell volume regulation and xenobiotic biotransformation. Comp. Biochem. Physiol. A 128: 207–222; 2001. doi:10.1016/S1095-6433(00)00293-2.
Lin H.; Pfeiffer D. C.; Vogl A. W.; Pan J.; Randall D. J. Immunolocalization of H+-ATPase in the gill epithelia of rainbow trout. J. Exp. Biol. 195: 169–183; 1994.
Loh Y. H.; Christoffels A.; Brenner S.; Hunziker W.; Venkatesh B. Extensive expansion of the claudin gene family in the teleost fish, Fugu rubripes. Genome Res. 14: 1248–1257; 2004. doi:10.1101/gr.2400004.
Marshall W. S. Transepithelial potential and short circuit current across isolated skin of Gillichthys mirabilis (Teleostei: Gobiidae), acclimated to 5% and 100% seawater. J. Comp. Physiol. B 114: 157–165; 1977.
Marshall W. S.; Bryson S. E.; Burghardt J. S.; Verbost P. M. Ca2+ transport by opercular epithelium of the freshwater-adapted euryhaline teleost, Fundulus heteroclitus. J. Comp. Physiol. B 165: 268–277; 1995. doi:10.1007/BF00367310.
Marshall W. S.; Bryson S. E.; Darling P.; Whitten C.; Patrick M.; Wilkie M.; Wood C. M.; BucklandNicks J. NaCl transport and ultrastructure of opercular epithelium from a freshwater-adapted euryhaline teleost, Fundulus heteroclitus. J. Exp. Zool. 277: 23–37; 1997. doi:10.1002/(SICI)1097-010X(19970101)277:1<23::AID-JEZ3>3.0.CO;2-D.
McCormick S. D. Methods for nonlethal gill biopsy and measurement of Na+, K+-ATPase activity. Can. J. Fish Aquat. Sci. 50: 656–658; 1993.
Pan T. C.; Liao B. K.; Huang C. J.; Lin L. Y.; Hwang P. P. Epithelial Ca(2+) channel expression and Ca(2+) uptake in developing zebrafish. Am. J. Physiol. 289: R1202–R1211; 2005.
Part P.; Norrgren L.; Bergstrom E.; Sjoberg P. Primary cultures of epithelial cells from rainbow trout gills. J. Exp. Biol. 175: 219–232; 1993.
Perry S. F.; Goss G. G.; Fenwick J. C. Interrelationships between gill chloride cell morphology and calcium uptake in freshwater teleosts. Fish. Physiol. Biochem. 10: 327–337; 1992. doi:10.1007/BF00004482.
Perry S. F.; Laurent P. Environmental effects on fish gill structure and function. In: RankinJ. C.; JensenF. B. (eds) Fish ecophysiology. Chapman and Hall, London, pp 231–264; 1993.
Perry S. F.; Walsh P. J. Metabolism of isolated fish gill cells: contribution of epithelial chloride cells. J. Exp. Biol. 144: 507–520; 1989.
Perry S. F.; Wood C. M. Kinetics of branchial calcium uptake in the rainbow trout—effects of acclimation to various external calcium levels. J. Exp. Biol. 116: 411–433; 1985.
Potts W. T. W. Transepithelial potential in fish gills. In: HoarW. S.; RandallD. J. (eds) Fish physiology. Academic, Orlando, FL, pp 105–128; 1984.
Qiu A. D.; Hogstrand C. Functional characterisation and genomic analysis of an epithelial calcium channel (ECaC) from pufferfish, Fugu rubripes. Gene 342: 113–123; 2004. doi:10.1016/j.gene.2004.07.041.
Rajasekaran S. A.; Barwe S. P.; Gopal J.; Ryazantsev S.; Schneeberger E. E.; Rajasekaran A. K. Na-K-ATPase regulates tight junction permeability through occludin phosphorylation in pancreatic epithelial cells. Am. J. Physiol. 292: G124–G133; 2007.
Scheffey C.; Foskett J. K.; Machen T. E. Localization of ionic pathways in the teleost opercular membrane by extracellular recording with a vibrating probe. J. Memb. Biol. 75: 193–203; 1983. doi:10.1007/BF01871950.
Shahsavarani A.; McNeill B.; Galvez F.; Wood C. M.; Goss G. G.; Hwang P. P.; Perry S. F. Characterization of a branchial epithelial calcium channel (ECaC) in freshwater rainbow trout (Oncorhynchus mykiss). J. Exp. Biol. 209: 1928–1943; 2006. doi:10.1242/jeb.02190.
Shahsavarani A.; Perry S. F. Hormonal and environmental regulation of epithelial calcium channel in gill of rainbow trout (Oncorhynchus mykiss). Am. J. Physiol. 291: R1490–R1498; 2006.
Sullivan G. V.; Fryer J. N.; Perry S. F. Immunolocalization of proton pumps (H+-ATPase) in pavement cells in rainbow trout gill. J. Exp. Biol. 198: 2619–2629; 1995.
Van Itallie C. M.; Anderson J. M. Claudins and epithelial paracellular transport. Ann. Rev. Physiol. 68: 403–429; 2006. doi:10.1146/annurev.physiol.68.040104.131404.
Violette M. I.; Madan P.; Watson A. J. Na+/K+-ATPase regulates tight junction formation and function during mouse preimplantation development. Dev. Biol. 289: 406–419; 2006. doi:10.1016/j.ydbio.2005.11.004.
Wood C.; Part P. Cultured branchial epithelia from freshwater fish gills. J. Exp. Biol. 200: 1047–1059; 1997.
Wood C. M.; Eletti B.; Part P. New methods for the primary culture of gill epithelia from freshwater rainbow trout. Fish Physiol. Biochem. 26: 329–344; 2002a. doi:10.1023/B:FISH.0000009262.45438.79.
Wood C. M.; Gilmour K. M.; Part P. Passive and active transport properties of a gill model, the cultured branchial epithelium of the freshwater rainbow trout (Oncorhynchus mykiss). Comp. Biochem. Physiol. A 119: 87–96; 1998. doi:10.1016/S1095-6433(97)00403-0.
Wood C. M.; Kelly S. P.; Zhou B.; Fletcher M.; O’Donnell M.; Eletti B.; Part P. Cultured gill epithelia as models for the freshwater fish gill. Biochim. Biophys. Acta—Biomembr. 1566: 72–83; 2002b.
Wood C. M.; Marshall W. S. Ion balance, acid-base regulation, and chloride cell function in the common killifish, Fundulus heteroclitus—a euryhaline estuarine teleost. Estuaries 17: 34–52; 1994. doi:10.2307/1352333.
Zhou B. S.; Kelly S. P.; Ianowski J. P.; Wood C. M. Effects of cortisol and prolactin on Na+ and Cl− transport in cultured branchial epithelia from FW rainbow trout. Am. J. Physiol. 285: R1305–R1316; 2003.
Zhou B. S.; Kelly S. P.; Wood C. M. Response of developing cultured freshwater gill epithelia to gradual apical media dilution and hormone supplementation. J. Exp. Zool. 301A: 867–881; 2004. doi:10.1002/jez.a.108.
Zhou B. S.; Nichols J.; Playle R. C.; Wood C. M. An in vitro biotic ligand model (BLM) for silver binding to cultured gill epithelia of freshwater rainbow trout (Oncorhynchus mykiss). Toxicol. Appl. Pharmacol. 202: 25–37; 2005. doi:10.1016/j.taap.2004.06.003.
Acknowledgments
Funded by an NSERC (Canada) Discovery Grant to CMW, who is also supported by the Canada Research Chair Program.
Author information
Authors and Affiliations
Corresponding author
Additional information
Editor: J. Denry Sato
Rights and permissions
About this article
Cite this article
Galvez, F., Tsui, T. & Wood, C.M. Cultured trout gill epithelia enriched in pavement cells or in mitochondria-rich cells provides insights into Na+ and Ca2+ transport. In Vitro Cell.Dev.Biol.-Animal 44, 415–425 (2008). https://doi.org/10.1007/s11626-008-9131-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11626-008-9131-z
Keywords
- Mitochondria-rich cells
- Pavement cells
- Ussing flux criterion
- Transepithelial resistance
- Transepithelial potential