Skip to main content

Advertisement

Log in

Cytological properties of an Aedes albopictus mosquito cell line infected with Wolbachia strain wAlbB

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

In vitro production of the obligate intracellular bacterium, Wolbachia pipientis, is essential to its manipulation as a genetic tool to spread transgenes within vector populations. We have adapted the Wolbachia-infected Aa23 Aedes albopictus mosquito cell line to Eagle’s minimal medium, supplemented with nonessential amino acids, glutamine, and 20% fetal bovine serum. When plated at low densities, Aa23E cells grew as patchy monolayers, comprised of non-contiguous clusters of cells that gave rise to solid clumps of tightly adherent cells. Multicellular clumps eventually detached from the substrate and floated freely in the medium. Removal of Wolbachia by treatment with tetracycline did not alter the cytological properties of the host cells, which had a population doubling time of 4–5 d. The presence of Wolbachia was monitored by Giemsa staining of cytological preparations, polymerase chain reaction (PCR) amplification of Wolbachia 16S ribosomal DNA, and by simultaneous PCR amplification of ribosomal protein genes from Wolbachia and mosquito host cell genomes. Wolbachia morphology was pleomorphic, and Wolbachia DNA persisted in the culture medium for several weeks after degradation of PCR-amplifiable host cell DNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.

Similar content being viewed by others

References

  • Dobson S. L.; Marsland E. J.; Veneti Z.; Bourtzis K.; O’Neill S. L. Characterization of Wolbachia host cell range via the in vitro establishment of infections. Appl. Environ. Microbiol. 68: 656–660; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Dulbecco R.; Vogt M. Plaque formation and isolation of pure lines with poliomyelitis virus. J. Exp. Med. 99: 167–182; 1954.

    Article  PubMed  CAS  Google Scholar 

  • Dutton T. J.; Sinkins S. P. Strain-specific quantitation of Wolbachia density in Aedes albopictus and effects on larval rearing conditions. Insect Mol. Biol. 13: 317–322; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Fallon A. M. Transfection of cultured mosquito cells. In: CramptonJ. M.; BeardC. B.; LouisC. (eds) Molecular biology of insect disease vectors. Chapman and Hall, New York, pp 430–443; 1997.

    Google Scholar 

  • Fallon A. M.; Kurtti T. J. Cultured cells as a tool for analysis of gene expression. In: MarquardtW. C. (ed) Biology of disease vectors. 2nd ed. Elsevier, New York, pp 539–549; 2005.

    Google Scholar 

  • Fallon A. M.; Li L. The C-terminal extension that characterizes mosquito (Diptera: Culicidae) ribosomal protein S6 is widespread among the Culicomorpha. J. Med. Entomol. 44: 608–616; 2007.

    Article  PubMed  CAS  Google Scholar 

  • Gerenday A.; Fallon A. M. Cell cycle parameters in Aedes albopictus mosquito cells. In Vitro Cell Dev. Biol., Anim. 32: 307–312; 1996.

    Article  CAS  Google Scholar 

  • Hernandez V. P.; Higgins L. A.; Schwientek M. S.; Fallon A. M. The histone-like C-terminal extension in ribosomal protein S6 in Aedes and Anopheles mosquitoes is encoded within the distal portion of exon 3. Insect Biochem. Mol. Biol. 33: 901–910; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Hertig M. The Rickettsia, Wolbachia pipientis (gen et sp. n.) and associated inclusions of the mosquito, Culex pipiens. Parasitology 28: 453–486; 1936.

    Article  Google Scholar 

  • Lo N.; Casiraghi M.; Salati E.; Bazzocchi C.; Bandi C. How many Wolbachia supergroups exist? Mol. Biol. Evol. 19: 341–346; 2002.

    PubMed  CAS  Google Scholar 

  • O’Neill S. L.; Giordano R.; Colbert A. M. E.; Karr T. L.; Robertson H. M. 16S rRNA phylogenetic analysis of the bacterial endosymbionts associated with cytoplasmic incompatibility in insects. Proc. Natl. Acad Sci. U. S. A. 89: 2699–2702; 1992.

    Article  PubMed  CAS  Google Scholar 

  • O’Neill S. L.; Pettigrew M. M.; Sinkins S. P.; Braig H. R.; Andreadis T. G.; Tesh R. B. In vitro cultivation of Wolbachia pipientis in an Aedes albopictus cell line. Insect Mol. Biol. 6: 33–39; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Rasgon J. L.; Gamston C. E.; Ren X. Survival of Wolbachia pipientis in cell-free medium. Appl. Env. Microbiol. 72: 6934–6937; 2006.

    Article  CAS  Google Scholar 

  • Ruang-areerate T.; Kittayapong P.; McGraw E. A.; Baimai V.; O’Neill S. L. Wolbachia replication and host cell division in Aedes albopictus. Curr. Microbiol. 49: 10–12; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Saito K.; Mattheakis L. C.; Nomura M. Post-transcriptional regulation of the str operon in Escherichia coli. Ribosomal protein S7 inhibits coupled translation of S7 but not its independent translation. J. Mol. Biol. 235: 111–124; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Sasaki T.; Braig H. R.; O’Neill S. L. Analysis of Wolbachia protein synthesis in Drosophila in vivo. Insect Mol. Biol. 7: 101–105; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Schneider I. Differentiation of larval Drosophila eye-antennal discs in vitro. J. Exp. Zool. 156: 91–104; 1964.

    Article  PubMed  CAS  Google Scholar 

  • Shih K. M.; Gerenday A.; Fallon A. M. Culture of mosquito cells in Eagle’s medium. In Vitro Cell Dev. Biol., Anim. 34: 629–630; 1998.

    Article  CAS  Google Scholar 

  • Sinkins S. P. Wolbachia and cytoplasmic incompatibility in mosquitoes. Insect Biochem. Mol. Biol. 34: 723–729; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Sinkins S. P.; Gould F. Gene drive systems for insect disease vectors. Nat. Rev., Genet. 7: 427–435; 2006.

    Article  CAS  Google Scholar 

  • Varma M. G. R.; Pudney M. The growth and serial passage of cell lines from Aedes aegypti (L.) larvae in different media. J. Med. Entomol. 6: 432–439; 1969.

    PubMed  CAS  Google Scholar 

  • Wu M.; Sun L. V.; Vamathevan J.; Riegler M.; Deboy R.; Brownlie J. C. et al. Phylogenomics of the reproductive parasite Wolbachia pipientis wMel: A streamlined genome overrun by mobile genetic elements. PloS Biol. 2: E69; 2004.

    Article  PubMed  Google Scholar 

  • Yen J. H.; Barr A. R. New hypothesis of the cause of cytoplasmic incompatibility in Culex pipiens L. Nature 232: 657–658; 1971.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH grant AI070913 and by the University of Minnesota Agricultural Experiment Station, St. Paul, MN. I thank Anna Gerenday for technical assistance and Drs. TJ Kurtti, UG Munderloh and A Gerenday for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ann M. Fallon.

Additional information

Editor: J. Denry Sato

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fallon, A.M. Cytological properties of an Aedes albopictus mosquito cell line infected with Wolbachia strain wAlbB. In Vitro Cell.Dev.Biol.-Animal 44, 154–161 (2008). https://doi.org/10.1007/s11626-008-9090-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-008-9090-4

Keywords

Navigation