Skip to main content

Advertisement

Log in

Adult rat bone marrow stromal cells differentiate into Schwann cell-like cells in vitro

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

Bone marrow stromal cells (MSCs) have the capability of differentiating into mesenchymal and non-mesenchymal lineages. In this study, MSCs isolated from adult Sprague-Dawley rats were cultured to proliferation, followed by in vitro induction under specific conditions. The results demonstrated that MSCs were transdifferentiated into cells with the Schwann cell (SC) phenotypes according to their morphology and immunoreactivities to SC surface markers including S-100, glial fibrillary acidic protein (GFAP) and low-affinity nerve growth factor receptor (p75). Consequently, rat adult MSCs can be induced in vitro to differentiate into SC-like cells, thus developing an abundant and accessible SC reservoir to meet the requirements of constructing tissue engineered nerve grafts for peripheral nerve repair.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Adlkofer K, Lai C (2000) Role of neuregulins in glial cell development. Glia 29: 104–111

    Article  PubMed  CAS  Google Scholar 

  • Azizi SA, Stokes D, Augelli BJ et al. (1998) Engraftment and migration of human bone marrow stromal cells implanted in the brains of albino rats-similarities to astrocyte grafts. Proc Natl Acad Sci U S A 95: 3908–3913

    Article  PubMed  CAS  Google Scholar 

  • Chen S, Velardez MO, Warot X et al. (2006a) Neuregulin 1-erbB signaling is necessary for normal myelination and sensory function. J Neurosci 26: 3079–3086

    Article  PubMed  CAS  Google Scholar 

  • Chen X, Wang XD, Chen G et al. (2006b) Study of in vivo differentiation of rat bone marrow stromal cells into Schwann cell-like cells. Microsurgery 26: 111–115

    Article  PubMed  CAS  Google Scholar 

  • Cuevas P, Carceller F, Dujovny M et al. (2002) Peripheral nerve regeneration by bone marrow stromal cells. Neurol Res 24: 634–638

    Article  PubMed  Google Scholar 

  • Cui Q (2006) Actions of neurotrophic factors and their signaling pathways in neuronal survival and axonal regeneration. Mol Neurobiol 33: 155–179

    Article  PubMed  Google Scholar 

  • Dezawa M, Takahashi I, Esaki M et al. (2001) Sciatic nerve regeneration in rats induced by transplantation of in vitro differentiated bone marrow stromal cells. Eur J Neurosci 14: 1771–1776

    Article  PubMed  CAS  Google Scholar 

  • Dezawa M, Kanno H, Hoshino M, et al. (2004) Specific induction of neuronal cells from bone marrow stromal cells and application for autologous transplantation. J Clin Invest 12: 1701–1710

    Article  CAS  Google Scholar 

  • Dong Z, Sinanan A, Parkinson D et al. (1999) Schwann cell development in embryonic mouse nerves. J Neurosci Res 56: 334–348

    Article  PubMed  CAS  Google Scholar 

  • Evans GR (2000) Challenges to nerve regeneration. Semin Surg Oncol 19: 312–318

    Article  PubMed  CAS  Google Scholar 

  • Flores-Figueroa E, Arana-Trejo RM, Gutierrez-Espindola G et al. (2005) Mesenchymal stem cells in myelodysplastic syndromes: phenotypic and cytogenetic characterization. Leuk Res 29: 215–224

    Article  PubMed  CAS  Google Scholar 

  • Haynesworth SE, Baber MA, Caplan AI (1992) Cell surface antigens on human marrow-derived mesenchymal cells are detected by monoclonal antibodies. Bone 13: 69–80

    Article  PubMed  CAS  Google Scholar 

  • Huang YL, Ding M, Hansson HA (1998) Dorsal root ganglion nerve cells transiently express increased immunoreactivety of the calcium-binding protein S-100b after sciatic transection. Brain Res 785: 351–354

    Article  PubMed  CAS  Google Scholar 

  • Jessen KR, Mirsky R (2002) Signals that determine Schwann cell identity. J Anat 200: 367–376

    Article  PubMed  CAS  Google Scholar 

  • Jin K, Mao XO, Batteur S et al. (2003) Induction of neuronal markers in bone marrow cells: differential effects of growth factors and patterns of intracellular expression. Exp Neurol 184: 78–89

    Article  PubMed  CAS  Google Scholar 

  • Joseph NM, Mukouyama YS, Mosher JT et al. (2004) Neural crest stem cells undergo multilineage differentiation in developing peripheral nerves to generate endoneurial fibroblasts in addition to Schwann cells. Development 131: 5599–5612

    Article  PubMed  CAS  Google Scholar 

  • Joyner CJ, Bennett A, Triffitt JT (1997) Identification and enrichment of human osteoprogenitor cells by using differentiation stage-specific monoclonal antibodies. Bone 21: 1–6

    Article  PubMed  CAS  Google Scholar 

  • Kohyama J, Abe H, Shimazaki T et al. (2001) Brain from bone: efficient “meta-differentiation” of marrow stroma-derived mature osteoblasts to neurons with Noggin or a demethylating agent. Differentiation 68: 235–244

    Article  PubMed  CAS  Google Scholar 

  • Krekoski CA, Neubauer D, Zuo J et al. (2001) Axonal regenration into acellular nerve grafts is enhanced by degradation of chondroitin sulfate proteoglycan. J Neurosci 21: 6206–6213

    PubMed  CAS  Google Scholar 

  • Leimeroth R, Lobsiger C, Lussi A et al. (2002) Membrane-bound neuregulin1 type III actively promotes Schwann cell differentiation of multipotent progenitor cells. Dev Biol 246: 245–258

    Article  PubMed  CAS  Google Scholar 

  • Li Q, Ping P, Jiang H et al. (2006) Nerve conduit filled with GDNF gene-modified Schwann cells enhances regeneration of the peripheral nerve. Microsurgery 26: 116–121

    Article  PubMed  CAS  Google Scholar 

  • Lundborg G (2004) Alternatives to autologous nerve grafts. Handchir Mikrochir Plast Chir 36: 1–7

    Article  PubMed  CAS  Google Scholar 

  • Maro GS, Vermeren M, Voiculescu O et al. (2004) Neural crest boundary cap cells constitute a source of neuronal and glial cells of the PNS. Nat Neurosci 7: 930–938

    Article  PubMed  CAS  Google Scholar 

  • McDonald DS, Zochodne DW (2003) An injectable nerve regeneration chamber for studies of unstable soluble growth factors. J Neurosci Methods 122: 171–178

    Article  PubMed  CAS  Google Scholar 

  • Mosahebi A, Wiberg M, Terenghi G et al. (2003) Addition of fibronectin to alginate matrix improves peripheral nerve regeneration in tissue-engineered conduits. Tissue Eng 9: 209–218

    Article  PubMed  CAS  Google Scholar 

  • Munoz-Elias G, Marcus AJ, Coyne TM et al. (2004) Adult bone marrow stromal cells in the embryonic brain: engraftment, migration, differentiation, and long-term survival. J Neurosci 24: 4585–4595

    Article  PubMed  CAS  Google Scholar 

  • Myers RR, Heckman HM, Powell HC (1983) Endoneurial fluid is hypertonic. Results of microanalysis and its significance in neuropathy. J Neuropathol Exp Neurol 42: 217–224

    Article  PubMed  CAS  Google Scholar 

  • Ogata T, Yamamoto S, Nakamura K et al. (2006) Signaling axis in Schwann cell proliferation and differentiation. Mol Neurobiol 33: 51–62

    Article  Google Scholar 

  • Paniushin OV, Domaratskaia EI, Starostin VI (2006) Mesenchymal stem cells: sources, phenotype, and differentiation potential. Izv Akad Nauk Ser Biol (Russian) Jan–Feb:6–25

  • Pittenger MF, Mackay AM, Beck SC et al. (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284: 143–147

    Article  Google Scholar 

  • Rosenbaum C, Karyala S, Marchionni MA et al. (1997) Schwann cells express NDF and SMDF/n-ARIA mRNAs, secrete neuregulin, and show constitutive activation of erbB3 receptors: evidence for a neuregulin autocrine loop. Exp Neurol 148: 604–615

    Article  PubMed  CAS  Google Scholar 

  • Sanchez-Ramos J, Song S, Pelaez CF et al. (2000) Adult bone marrow stromal cells differentiate into neural cells in vitro. Exp Neurology 164: 247–256

    Article  CAS  Google Scholar 

  • Tohill M, Mantovani C, Wiberg M et al. (2004) Rat bone marrow mesenchymal stem cells express glial markers and stimulate nerve regeneration. Neurosci Lett 362: 200–203

    Article  PubMed  CAS  Google Scholar 

  • Woodbury D, Schwarz EJ, Prockop DJ et al. (2000) Adult rat and human bone marrow stromal cells differentiate into neurons. J Neurosci Res 61: 364–370

    Article  PubMed  CAS  Google Scholar 

  • Zanazzi G, Einheber S, Westreich R et al. (2001) Glial growth factor/neuregulin inhibits Schwann cell myelination and induces demyelination. J Cell Biol 152: 1289–1299

    Article  PubMed  CAS  Google Scholar 

  • Zorick TS, Lemke G (1996) Schwann cell differentiation. Curr Opin Cell Biol 8: 870–876

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by Hi-Tech Research and Development Program of China (863 Program, grant no.2006AA02A128).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XiaoSong Gu.

Additional information

Editor: J. Denry Sato

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, W., Chen, X., Wang, X. et al. Adult rat bone marrow stromal cells differentiate into Schwann cell-like cells in vitro. In Vitro Cell.Dev.Biol.-Animal 44, 31–40 (2008). https://doi.org/10.1007/s11626-007-9064-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-007-9064-y

Keywords