Skip to main content

Advertisement

Log in

Application of methods for viral clearance in stem cell production

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

Regenerative medicine therapies will allow in the future the transplant of cells of human origin in some diseases that until now have been incurable. The assurance of the safety and quality, especially from a microbiological point of view, is very important for these therapeutic products. Depending on the starting material, there are several sources of pathogen presence, mainly human viruses. Also, the use of feeders of animal origin as layers in which the stem cells can grow may permit the transmission of animal pathogens to these cells. However, cell sources are limited due to the low availability of spare in vitro fecundation human embryos and the low rate of success in the derivation of human stem cell lines. Thus, in several cases, it will be necessary to evaluate the possibility of removing or inactivating these microorganisms. In this paper, we summarize the main methods of viral clearance and we have provided an overview of the main features taking into account in the viral clearance techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barrett PN, Meyer H, Wachtel I, Eibl J, Dorner F (1997) Inactivation of hepatitis A virus in plasma products by vapor heating. Transfusion 37: 215–220

    Article  PubMed  CAS  Google Scholar 

  • Bonvicini F, Gallinella G, Gentilomi GA, Ambretti S, Musían M, Zerbini M (2006) Prevention of iatrogenic transmission of B19 infection: different approaches to detect, remove or inactive virus contamination. Clin Lab 52: 263-268

    PubMed  Google Scholar 

  • Brandwein H, Aranha-Creado H (2000) Membrane filtration for virus removal. Dev Biol (Basel) 102: 157–163

    CAS  Google Scholar 

  • Brorson K, Krejci S, Lee K, Hamilton E, Stein K, Xu Y (2003) Bracketed generic inactivation of rodent retroviruses by low pH treatment for monoclonal antibodies and recombinant proteins. Biotechnol Bioeng 82: 321–329

    Article  PubMed  CAS  Google Scholar 

  • Burnouf T, Griffiths E, Padilla A, Seddik S, Stephano MA, Gutierrez JM (2004) Assessment of the viral safety of antivenoms fractionated from equine plasma. Biologicals 32: 115–128

    Article  PubMed  CAS  Google Scholar 

  • Burstyn DG, Hageman TC (1996) Strategies for viral removal and inactivation. Dev Biol Stand 88: 73–79

    PubMed  CAS  Google Scholar 

  • Cobo F, Stacey GN, Hunt C, Cabrera C, Nieto A, Montes R, Cortés JL, Catalina P, Barnie A, Concha A (2005) Microbiological control in stem cell banks: approaches to standardisation. Appl Microbiol Biotechnol 68: 456–466

    Article  PubMed  CAS  Google Scholar 

  • Cobo F, Talavera P, Concha A (2006) Diagnostic approaches for viruses and prions in stem cell banks. Virology 347: 1–10.

    Article  PubMed  CAS  Google Scholar 

  • Committee for Proprietary Medicinal Products (1996) CPMP/BWP/268/95. European Medicines Evaluation Agency. Note for guidance on virus validations: the design, contribution and interpretation of studies validating the inactivation and removal of viruses

  • Committee for Proprietary Medicinal Products (1997) CPMP/ICH/295/95. European Medicines Evaluation Agency. ICH consensus guideline on quality of biotechnology products: viral safety evaluation of biotechnology products derived from cell lines of human or animal origin. Canary Wharf, London

    Google Scholar 

  • Curtis S, Lee K, Blank GS, BrorsonK, Xu Y (2003) Generic/matrix evaluation of SV40 clearance by anion exchange chromatography in flow-through mode. Biotechnol Bioeng 84: 179–186

    Article  PubMed  CAS  Google Scholar 

  • Darling A (2002) Validation of biopharmaceutical purification processes for virus clearance evaluation. Mol Biotechnol 21: 57–83

    Article  PubMed  CAS  Google Scholar 

  • Directive 17/EC of 8 February implementing directive 2004/23/EC of the European Parliament and of the Council as regards certain technical requirements for the donation, procurement and testing of human tissues and cells. Official Journal of the European Union 2006

  • Heerklotz H, Seelig J (2007) Leakage and lysis of lipid membranes induces by the lipopeptide surfactin. Eur Biophys J 36: 305–314

    Article  PubMed  CAS  Google Scholar 

  • Hernigou P, Gras G, Marinello G, Dormont D (2000) Inactivation of HIV by application of heat and radiation: implication in bone banking with irradiated allograft bone. Acta Orthop Scand 71: 508–512

    Article  PubMed  CAS  Google Scholar 

  • Hornsey VS, Young DA, Docherty A, Hughes W, Prowse CV (2004) Cryoprecipitate prepared from plasma treated with methylene blue plus light: increasing the fibrinogen concentration. Transfus Med 14: 369–374

    Article  PubMed  CAS  Google Scholar 

  • ICH Q5A (1997) Quality of biotechnological products: viral safety evaluation of biotechnology products derived from cell lines of human or animal origin. ICH Harmonised Tripartite Guideline

  • Kreis W, Kaplan MH, Freeman J, Sun DK, Sarin PS (1990) Inhibition of HIV replication by Hyssop officinalis extracts. Antiviral Res 14: 323–337

    Article  PubMed  CAS  Google Scholar 

  • Larzul D (1999) Viral validation design of a manufacturing process. Dev Biol Stand 99: 139–150

    PubMed  CAS  Google Scholar 

  • Lawrence SA (2000) Beta-propiolactone: viral inactivation in vaccines and plasma products. PDA J Pharm Sci Technol 54: 209–217

    PubMed  CAS  Google Scholar 

  • Lazarus HM, Haynesworth SE, Gerson SL, Rosenthal NS, Caplan AI (1995) Ex vivo expansion and subsequent infusion of human bone marrow derived stromal progenitor cells (mesenchymal progenitor cells): implications for therapeutic use. Bone Marrow Transplant 16: 557–564

    PubMed  CAS  Google Scholar 

  • Lazarus HM, Loberiza FR Jr, Zhang MJ, Armitage JO, Ballen KK, Bashey A, Bolwell BJ, Burns LJ, Freytes CO, Gale RP, Gibson J, Herzig RH, LeMaistre CF, Marks D, Mason J, Miller AM, Milone GA, Pavlovsky S, Reece DE, Rizzo JD, van Besien K, Vose JM, Horowitz MM (2001) Autotransplants for Hodgkin’s disease in first relapse or second remission: a report from the autologous blood and marrow transplant registry (ABMTR). Bone Marrow Transplant 27: 387–396

    Article  PubMed  CAS  Google Scholar 

  • Lazo A, Tassello J, Jayarama V, Ohagen A, Gibaja V, Kramer E, Marmorato A, Billia-Shaveet D, Purmal A, Brown F, Chapman J (2002) Broad-spectrum virus reduction in red cell concentrates using inactine pen 110 chemistry. Vox Sang 83: 313–323

    Article  PubMed  CAS  Google Scholar 

  • Lebkowski JS, Gold J, Xu C, Funk W, Chiu CP, Carpenter MK (2001) Human embryonic stem cells: culture, differentiation, and genetic modification for regenerative medicine applications. Cancer J 7: S83–S93

    PubMed  Google Scholar 

  • McAlister M, Aranha H, Larson R (2004) Use of bacteriophages as surrogates for mammalian viruses. Dev Biol (Basel) 118: 89–98

    CAS  Google Scholar 

  • Nieto A, Cobo F, Barroso-delJesús A, Barnie AH, Catalina P, Cabrera CM, Cortés JL, Montes RM, Concha A (2006) Embryonic stem cell bank: a work proposal. Stem Cell Reviews 2: 117–126

    PubMed  CAS  Google Scholar 

  • Nims RW (2006) Detection of adventitious viruses in biologicals. A rare occurrence. Dev Biol (Basel) 123: 153–164

    CAS  Google Scholar 

  • Norling L, Lute S, Emery R, Khuu W, Voisard M, Xu Y, Chen Q, Blank GS, Brorson K (2005). Impact of multiple re-use of anion-exchange chromatography media on virus removal. Chromatogr A 1069: 79–89

    Article  CAS  Google Scholar 

  • Randhawa AS, Stanton GJ, Green JA, Baron S (1977). Variables affecting viral plaque formation in microculture plaque assays using homologous antibody in a liquid overlay. J Clin Microbiol 5: 535–542

    PubMed  CAS  Google Scholar 

  • Raviv Y, Viard M, Bess JW Jr., Chertova E, Blumenthal R (2005). Inactivation of retrovirus with preservation of structural integrity by targeting of hydrophobic domain of the viral envelope. J Virol 79: 12394–12400

    Article  PubMed  CAS  Google Scholar 

  • Roberts PL, Dunkerley C (2003) Effect of manufacturing process parameters on virus inactivation by solvent-detergent treatment in a high-purity factor IX concentrate. Vox Sang 84: 170–175

    Article  PubMed  CAS  Google Scholar 

  • Shepherd AJ, Wilson NJ, Smith KT (2003) Characterization of endogenous retrovirus in rodent cell lines used for production of biologicals. Biologicals 31: 251–260

    Article  PubMed  CAS  Google Scholar 

  • Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived for human blastocysts. Science 282: 1145–1147

    Article  PubMed  CAS  Google Scholar 

  • Uemura Y, Yang YH, Heldebrant CM, Takechi K, Yokohama K (1994) Inactivation and elimination of viruses during preparation of human intravenous immunoglobulin. Vox Sang 67: 246–254

    Article  PubMed  CAS  Google Scholar 

  • US Food and Drug Administration. Guidance for Industry. Q5A viral safety evaluation of biotechnology products derived from cell lines of human or animal origin. US Department of Health and Human Services 1998

  • Weiss ML, Troyer DL (2006) Stem cells in the umbilical cord. Stem Cell Rev 2: 155–162

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

To Ms Angela Barnie for the English correction of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Cobo.

Additional information

Editor: J. Denry Sato

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cobo, F. Application of methods for viral clearance in stem cell production. In Vitro Cell.Dev.Biol.-Animal 43, 371–378 (2007). https://doi.org/10.1007/s11626-007-9059-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-007-9059-8

Keywords

Navigation