Skip to main content

Advertisement

Log in

Glycated type 1 collagen induces endothelial dysfunction in culture

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

Hyperglycemia-induced protein glycation is thought to be implicated in the diabetic vasculopathy. In this study, we cultured vascular endothelial cells on native or glycated collagen matrix and compared their growth and functional characteristics. At lower plating density, the cells grew equally well on both substrata; however, at higher planting density, the cells plated on glycated collagen grew slower and reached a lower confluent density compared to that of the native collagen-based cultures. Confluent cell layers formed on glycated collagen exhibited a lower diffusion barrier function and a less response to epidermal growth factor stimulated prostacyclin production, compared to their native collagen-cultured counterparts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.

Similar content being viewed by others

References

  • Ahmed, N., 2005. Advanced glycation endproducts—role in pathology of diabetic complications. Diabetes Research and Clinical Practice. 67(1), 3–21.

    Article  PubMed  CAS  Google Scholar 

  • Al-Abed,Y., Bucala, R., 2000. Structure of a synthetic glucose derived advanced glycation endproduct that is immunologically cross-reactive with its naturally occurring counterparts. Bioconjugate Chemistry. 11, 39–45.

    Article  PubMed  CAS  Google Scholar 

  • Bailey, A.J., Sims, T.J., Avery, N.C., Halligane, E.P., 1995. Non-enzymic glycation of fibrous collagen: reaction products of glucose and ribose. Biochemical Journal. 305, 385–390.

    PubMed  CAS  Google Scholar 

  • Brownlee, M., Vlassara, H., Cerami, A., 1985. Nonenzymatic glycosylation products on collagen covalently trap low-density lipoprotein. Diabetes. 34, 938–941.

    Article  PubMed  CAS  Google Scholar 

  • Bucala, R., Makita, Z., Vega, G., Grundy, S., Koschinsky, T., Cerami, A., Vlassara, H., 1994. Modification of LDL by advanced glycation endproducts contribute to the dyslipidaemia of diabetes and renal insufficiency. Proceedings of the National Academy of Sciences of the United States of America. 91, 9441–9445.

    Google Scholar 

  • Bunn, H.F., Haney, D.N., Kamin, S., Gabbay, K.H., Gallop, P.M., 1976. The biosynthesis of human hemoglobin A1c. Slow glycosylation of hemoglobin in vivo. Journal of Clinical Investigation. 57, 1652–1659.

    PubMed  CAS  Google Scholar 

  • Chen, J., Brodsky, S., Li, H., Hampel, D.J., Miyata, T., Weinstein, T., Gafter, U., Norman, J.T., Fine, L.G., Goligorsky, M.S., 2001. Delayed branching of Endothelial capillary-like cords in glycated collagen I is mediated by early induction of PAI-1. American Journal of Physiology: Renal Physiology. 281, F71–F80.

    PubMed  CAS  Google Scholar 

  • Chen, J., Brodsky, S.V., Goligorsky, D.M., Hample, D.J., Li, H., Gross, S.S., Goligorsky, M.S., 2002. Glycated collagen I induces premature senescence-like phenotypic changes in endothelial cells. Circulation Research. 90, 1290–1298.

    Article  PubMed  CAS  Google Scholar 

  • Chen, S., Chen, M.P., Ziyadeh, F.N., 2000. Amadori-glycated albumin in diabetic nephropathy: pathophysiologic connections. Kidney International Suppl. 77, S40–S44.

    Article  CAS  Google Scholar 

  • Chow, S.E., Lee, R.S., Shih, S.H., Chen, J.K., 1998. Oxidized LDL promotes vascular endothelial cell pinocytosis via a prooxidation mechanism. FASEB Journal. 12, 823–830.

    PubMed  CAS  Google Scholar 

  • Dyer, D.G., Dunn, J.A., Thorpe, S.R., Bailie, K E., Lyons, T.J., McCance, D.R., Baynes, J.W., 1993. Accumulation of Maillard reaction products in skin collagen in diabetes and aging. Journal of Clinical Investigation. 91, 2463–2469.

    PubMed  CAS  Google Scholar 

  • Facchiano, F., Lentini, A., Fogliano, V., Mancarella, S., Rossi, C., Facchiano, A., Capogrossi M.C., 2002. Sugar-induced modification of fibroblast growth factor 2 reduces its angiogenic activity in vivo. American Journal of Pathology. 161, 531–541.

    PubMed  CAS  Google Scholar 

  • Frye, E.B., Degenhardt, T.P., Thorpe, S.R., and Baynes, J.W., 1998. Role of the Maillard reaction in aging of tissue proteins. Journal of Biological Chemistry. 273, 18714–18719.

    Article  PubMed  CAS  Google Scholar 

  • Jakuš, V., Bauerová K., Michalková D., Èársky J., 2001. Serum levels of advanced glycation end products in poorly metabolically controlled children with diabetes mellitus: relation to HbA1c. Diabetes Nutrition and Metabolism. 14, 207–211.

    Google Scholar 

  • Johnson, R.N., Metcalf, P.A., Baker, J.R. 1982. Fructosamine: a new approach to the estimation of serum glycosylprotein. An index of diabetic control. Clinica Chimica Acta. 127, 87–95.

    Article  Google Scholar 

  • Lopes-Virella, M.F., Klein, R.L., Lyons, T.J., Stevenson, H.C., Witztum, J.L., 1988. Glycosylation of LDL enhances cholesteryl ester synthesis in human monocyte-derived macrophages. Diabetes. 37, 550–557.

    Article  PubMed  CAS  Google Scholar 

  • McCance, D.R., Dyer, D.G., Dunn, J.A., Bailie, K.E., Thorpe, S.R., Baynes, J.W., Lyons, T.J., 1993. Maillard reaction products and their relation to complications in insulin-dependent diabetes mellitus. Journal of Clinical Investigation. 91, 2470–2478.

    PubMed  CAS  Google Scholar 

  • Meli, M., Granouillet, R., Reynaud, E., Chamson, A., Frey, J., and Perier C., 2003. Changes in glycation of fibrous type I collagen during long-term in vitro incubation with glucose. Journal of Protein Chemistry 22 (6), 521–525.

    Article  PubMed  CAS  Google Scholar 

  • Obayashi, H., Nakano, K., Shigeta, H., Yamaguchi, M., Yoshimori, K., Fukui, M., Fujii, M., Kitagawa, Y., Nakamura, N., Nakamura, K., Nakazawa, Y., Ienaga, K., Ohta, M., Nishimura, M., Fukui, I., Kondo, M., 1996. Formation of crossline as a fluorescent advanced glycation endproduct in vitro and in vivo. Biochemical and Biophysical Research Communications. 226, 37–41.

    Article  PubMed  CAS  Google Scholar 

  • Paul, R.G., Avery, N.C., Slatter, D.A., Sims, T.J., Bailey, A.J., 1998. Isolation and characterization of advanced glycation end products derived from the in vitro reaction of ribose and collagen. Biochemical Journal. 330, 1241–1248.

    PubMed  CAS  Google Scholar 

  • Reddy, S., Bichler, J., Wells-Knecht, K. J., Thorpe, S. R., Baynes, J. W., 1995. Ne-(Carboxymethyl)lysine is a dominant advanced glycation endproduct (AGE) In tissue proteins. Biochemistry 34, 10872–10878.

    Article  PubMed  CAS  Google Scholar 

  • Schleicher, E.D., Wagner, E., Nerlich, A.G., 1997. Increased accumulation of the glycoxidation product N (epsilon)—(carboxymethyl) lysine in human tissue in diabetes and aging. Journal of Clinical Investigation. 99, 457–468

    Article  PubMed  CAS  Google Scholar 

  • Sell, D.R., Nagaraj, R.H., Grandhee, S.K., Odetti, P., Lapolla, A., Fogarty, J., Monnier, V.M., 1991. Pentosidine: a molecular marker for the cumulative damage to proteins in diabetes, aging, and uremia. Diabetes Metabolism Reviews. 7, 239–251.

    Article  PubMed  CAS  Google Scholar 

  • Smith, M. A., Taneda, S., Richey, P. L., Miyata, S., Yan, S.-D., Stern, D., Sayre, L.M., Monnier, V.M., Perry, G., 1994. Advanced Maillar reaction product are associated with Alzheimer diaease. Proceedings of the National Academy of Sciences of the United States of America 91, 5710–5714.

  • Turk, Z., Mesic, R., Benko, B., 1998. Comparison of advanced glycation endproducts on haemoglobin (Hb-AGE) and haemoglobin A1c for the assessment of diabetic control. Clinica Chimica Acta, 272, 159–170.

    Article  Google Scholar 

  • Turk, Z., Ljubic, S., Turk, N., Benko, B., 2001. Detection of autoantibodies against advanced glycation endproducts and AGEimmune complexes in serum of patients with diabetes mellitus. Clinica Chimica Acta, 303, 105–115.

    Article  CAS  Google Scholar 

  • Vlassara, H., Palace, M.R., 2002. Diabetes and advanced glycation endproducts. Journal of Internal Medicine. 251, 87–101.

    Article  PubMed  CAS  Google Scholar 

  • Wautier, J.L., Zoukourian, C., Chappey, O., Wautier, M.P., Guillausseau, P.J., Cao, R., Hori, O., Stern, D., Schmidt A.M., 1996. Receptor-mediated endothelial cell dysfunction in diabetic vasculopathy. Soluble receptor for advanced glycation end products blocks hyperpermeability in diabetic rats. Journal of Clinical Investigation. 97, 238–243.

    PubMed  CAS  Google Scholar 

  • Westwood, M.E., Thimalley, P.J., 1995. Molecular characteristics of methylglyoxal-modified bovine and human serum albumins. Comparison with glucose-derived advanced glycation endproduct-modified serum albumins. Journal of Protein Chemistry 14, 359–372.

    Article  PubMed  CAS  Google Scholar 

  • Wolffenbuttel, B. H. R., Giordano, D., Founds, H.W., Bucala, R., 1996. Long-term assessment of glucose control by haemoglobin-AGE measurement. Lancet. 347, 513–515.

    Article  PubMed  CAS  Google Scholar 

  • Wu, J.T., Tu, M.C., Zhung, P., 1996. Advanced glycation end product (AGE): characterization of the products from the reaction between d-glucose and serum albumin. Journal Clinical Laboratory Analysis. 10, 21–34.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan-Kan Chen.

Additional information

Editor: J. Denry Sato

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuo, PC., Kao, CH. & Chen, JK. Glycated type 1 collagen induces endothelial dysfunction in culture. In Vitro Cell.Dev.Biol.-Animal 43, 338–343 (2007). https://doi.org/10.1007/s11626-007-9058-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-007-9058-9

Keywords

Navigation