Skip to main content
Log in

A novel in vitro three-dimensional skeletal muscle model

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

A novel three-dimensional (3D) skeletal muscle model composed of C2C12 mouse myoblasts is described. This model was generated by cultivating myoblasts in suspension using the rotary cell culture system (RCCS), a unique culture environment. Single-cell suspensions of myoblasts were seeded at 5 × 105/ml in growth medium without exogenous support structures or substrates. Cell aggregation occurred in both RCCS and suspension control (SC) conditions within 12 h but occurred more rapidly in the SC at all time intervals examined. RCCS-cultured myoblasts fused and differentiated into a 3D construct without serum deprivation or alterations. Syncitia were quantified at 3 and 6+ d in stained thin sections. A significantly greater number of syncitia was found at 6+ d in the RCCS cultures compared to the SC. The majority of syncitia were localized to the periphery of the cell constructs for all treatments. The expression of sarcomeric myosin heavy chain (MHC) was localized at or near the periphery of the 3D construct. The majority of MHC was associated with the large cells (syncitia) of the 6+-d aggregates. These results show, for the first time, that myoblasts form syncitia and express MHC in the presence of growth factors and without the use of exogenous supports or substrates. This model test system is useful for investigating initial cell binding, myoblast fusion and syncitia formation, and differentiation processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Arnesen, S.; Mosler, S.; Larsen, N.; Gadegaard, N.; Purslow, P.; Lawson, M. (2004). The effects of collagen type I topography on myoblasts in vitro. Connect Tissue Res. 45:238–247.

    Article  PubMed  CAS  Google Scholar 

  • Auluck, A.; Mudera, V.; Hunt, N.P.; Lewis, M.P. (2005). A three-dimensional in vitro model system to study the adaptation of craniofacial skeletal muscle following mechanostimulation. Eur J Oral Sci. 113:218–224.

    Article  PubMed  Google Scholar 

  • Bach, A.; Beier, J.P.; Stern-Staeter, J.; Horch, R.E. (2004). Skeletal muscle tissue engineering. J Cell Mol Med. 8:413–422.

    Article  PubMed  CAS  Google Scholar 

  • Baker, E.L.; Dennis, R.G.; Larkin, L.M. (2003). Glucose transporter content and glucose uptake in skeletal muscle constructs engineered in vitro. In Vitro Cell Dev Biol Anim. 39:434–439.

    Article  PubMed  CAS  Google Scholar 

  • Beach, R.L.; Burton, W.V.; Hendricks, W.J.; Festoff, B.W. (1982). Extracellular matrix synthesis by skeletal muscle in culture. Proteins and effect of enzyme degradation. J Biol Chem. 257:11437–11442.

    PubMed  CAS  Google Scholar 

  • Billiau, A.; Edy, V.G.; Heremans, H.; Van Damme, J.; Desmyter, J.; Georgiades, J.A.; Desomer, O. (1977). Human interferon: mass production in a newly established cell line, MG-63. Antimicrob Agents Chemother. 12:11–15.

    PubMed  CAS  Google Scholar 

  • Blau, H.M.; Webster, C.; Pavlath, G.K.; Chiu, C.P. (1985). Evidence for defective myoblasts in Duchenne muscular dystrophy. Adv Exp Med Biol. 182:85–110.

    PubMed  CAS  Google Scholar 

  • Borschel, G.H.; Dow, D.E.; Dennis, R.G.; Brown, D.L. (2006). Tissue-engineered axially vascularized contractile skeletal muscle. Plast Reconstr Surg. 117:2235–2242.

    Article  PubMed  CAS  Google Scholar 

  • Bouten, C.V.; Breuls, R.G.; Peeters, E.A.; Oomens, C.W.; Baaijens, F.P. (2003). In vitro models to study compressive strain-induced muscle cell damage. Biorheology. 40:383–388.

    PubMed  Google Scholar 

  • Casciari, J.J.; Sotirchos, S.V.; Sutherland, R.M. (1988). Glucose diffusivity in multicellular tumor spheroids. Cancer Res. 48:3905–3909.

    PubMed  CAS  Google Scholar 

  • Chan, X.C.; McDermott, J.C.; Siu, K.W. (2007). Identification of secreted proteins during skeletal muscle development. J Proteome Res. 6:698–710.

    Article  PubMed  CAS  Google Scholar 

  • Charge, S.B.; Rudnicki, M.A. (2004). Cellular and molecular regulation of muscle regeneration. Physiol Rev. 84:209–238.

    Article  PubMed  CAS  Google Scholar 

  • Cheema, U.; Yang, S.Y.; Mudera, V.; Goldspink, G.G.; Brown, R. (2003). A. 3-D in vitro model of early skeletal muscle development. Cell Motil Cytoskeleton. 54:226–236.

    Article  PubMed  CAS  Google Scholar 

  • Clejan, S.; O’Connor, K.; Rosensweig, N. (2001). Tri-dimensional prostate cell cultures in simulated microgravity and induced changes in lipid second messengers and signal transduction. J Cell Mol Med. 5:60–73.

    Article  PubMed  CAS  Google Scholar 

  • Cossu, G.; Kelly, R.; Di Donna, S.; Vivarelli, E.; Buckingham, M. (1995). Myoblast differentiation during mammalian somitogenesis is dependent upon a community effect. Proc Natl Acad Sci U S A. 92:2254–2258.

    Article  PubMed  CAS  Google Scholar 

  • Cunningham, K.S.; Gotlieb, A.I. (2005). The role of shear stress in the pathogenesis of atherosclerosis. Lab Invest. 85:9–23.

    Article  PubMed  CAS  Google Scholar 

  • Das, M.; Gregory, C.A.; Molnar, P.; Riedel, L.M.; Wilson, K.; Hickman, J.J. (2006). A defined system to allow skeletal muscle differentiation and subsequent integration with silicon microstructures. Biomaterials. 27:4374–4380.

    Article  PubMed  CAS  Google Scholar 

  • Dennis, R.G.; Kosnik, P.E. 2nd. (2000). Excitability and isometric contractile properties of mammalian skeletal muscle constructs engineered in vitro. In Vitro Cell Dev Biol Anim. 36:327–335.

    Article  PubMed  CAS  Google Scholar 

  • Desai, T.A. (2000). Micro- and nanoscale structures for tissue engineering constructs. Med Eng Phys. 22:595–606.

    Article  PubMed  CAS  Google Scholar 

  • Dutt, K.; Harris-Hooker, S.; Ellerson, D.; Layne, D.; Kumar, R.; Hunt, R. (2003). Generation of 3D retina-like structures from a human retinal cell line in a NASA bioreactor. Cell Transplant. 12:717–731.

    PubMed  Google Scholar 

  • Enmon, R.M. Jr.; O’Connor, K.C.; Song, H.; Lacks, D.J.; Schwartz, D.K. (2002). Aggregation kinetics well and poorly differentiated human prostate cancer cells. Biotechnol Bioeng. 80:580–588.

    Article  PubMed  CAS  Google Scholar 

  • Folkman, J.; Moscona, A. (1978). Role of cell shape in growth control. Nature. 273:345–349.

    Article  PubMed  CAS  Google Scholar 

  • Fournier, M.V.; Martin, K.J. (2006). Transcriptome profiling in clinical breast cancer: from 3D culture models to prognostic signatures. J Cell Physiol. 209:625–630.

    Article  PubMed  CAS  Google Scholar 

  • Freed, L.E.; Vunjak-Novakovic, G. (1997). Microgravity tissue engineering. In Vitro Cell Dev Biol Anim. 33:381–385.

    Article  PubMed  CAS  Google Scholar 

  • Garcia, A.J.; Vega, M.D.; Boettiger, D. (1999). Modulation of cell proliferation and differentiation through substrate-dependent changes in fibronectin conformation. Mol Biol Cell. 10:785–798.

    PubMed  CAS  Google Scholar 

  • Gawlitta, D.; Li, W.; Oomens, C.W.; Baaijens, F.P.; Bader, D.L.; Bouten, C.V. (2007). The relative contributions of compression and hypoxia to development of muscle tissue damage: an in vitro study. Ann Biomed Eng. 35:273–284.

    Article  PubMed  Google Scholar 

  • Gelain, F; Horii, A; Zhang, S. (2007). Designer self-assembling peptide scaffolds for 3-D tissue cell cultures and regenerative medicine. Macromol Biosci. 7:544–551.

    Article  PubMed  CAS  Google Scholar 

  • Glicklis, R.; Merchuk, J.C.; Cohen, S. (2004). Modeling mass transfer in hepatocyte spheroids via cell viability, spheroid size, and hepatocellular functions. Biotechnol Bioeng. 86:672–680.

    Article  PubMed  CAS  Google Scholar 

  • Ham, R.G.; St. Clair, J.A.; Webster, C.; Blau, H.M. (1988). Improved media for normal human muscle satellite cells: serum-free clonal growth and enhanced growth with low serum. In Vitro Cell Dev Biol. 24:833–844.

    Article  PubMed  CAS  Google Scholar 

  • Hammond, T.G.; Hammond, J.M. (2001). Optimized suspension culture: the rotating-wall vessel. Am J Physiol Renal Physiol. 281:F12–F25.

    PubMed  CAS  Google Scholar 

  • Hantai, D.; Tassin, A.M.; Gautron, J.; Labat-Robert, J. (1985). Biosynthesis of laminin and fibronectin by rat satellite cells during myogenesis in vitro. Cell Biol Int Rep. 9:647–654.

    Article  PubMed  CAS  Google Scholar 

  • Horsley, V.; Pavlath, G.K. (2004). Forming a multinucleated cell: molecules that regulate myoblast fusion. Cells Tissues Organs. 176:67–78.

    Article  PubMed  Google Scholar 

  • Huang, Y.C.; Dennis, R.G.; Larkin, L.; Baar, K. (2005). Rapid formation of functional muscle in vitro using fibrin gels. J Appl Physiol. 98:706–713.

    Article  PubMed  Google Scholar 

  • Ingber, D.E.; Folkman, J. (1989). How does extracellular matrix control capillary morphogenesis? Cell. 58:803–805.

    Article  PubMed  CAS  Google Scholar 

  • Ip, M.M.; Darcy, K.M. (1996). Three-dimensional mammary primary culture model systems. J Mammary Gland Biol Neoplasia. 1:91–110.

    Article  PubMed  CAS  Google Scholar 

  • Khaoustov, V.I.; Darlington, G.J.; Soriano, H.E.; Krishnan, B.; Risin, D.; Pellis, N.R.; Yoffe, B. (1999). Induction of three-dimensional assembly of human liver cells by simulated microgravity. In Vitro Cell Dev Biol Anim. 35:501–509.

    Article  PubMed  CAS  Google Scholar 

  • Kleinman, H.K.; Luckenbill-Edds, L.; Cannon, F.W.; Sephel, G.C. (1987). Use of extracellular matrix components for cell culture. Anal Biochem. 166:1–13.

    Article  PubMed  CAS  Google Scholar 

  • Krauss, R.S.; Cole, F.; Gaio, U.; Takaesu, G.; Zhang, W.; Kang, J.S. (2005). Close encounters: regulation of vertebrate skeletal myogenesis by cell–cell contact. J Cell Sci. 118:2355–2362.

    Article  PubMed  CAS  Google Scholar 

  • Lan, E.H.; Dunn, B.; Zink, J.I. (2005). Nanostructured systems for biological materials. Methods Mol Biol. 300:53–79.

    PubMed  CAS  Google Scholar 

  • Larkin, L.M.; Van der Meulen, J.H.; Dennis, R.G.; Kennedy, J.B. (2006). Functional evaluation of nerve–skeletal muscle constructs engineered in vitro. In Vitro Cell Dev Biol Anim. 42:75–82.

    Article  PubMed  CAS  Google Scholar 

  • Lee, H.S.; Teng, S.W.; Chen, H.C.; Lo, W.; Sun, Y.; Lin, T.Y.; Chiou, L.L.; Jiang, C.C.; Dong, C.Y. (2006). Imaging human bone marrow stem cell morphogenesis in polyglycolic acid scaffold by multiphoton microscopy. Tissue Eng. 12:2835–2841.

    Article  PubMed  CAS  Google Scholar 

  • Levenberg, S.; Katz, B.Z.; Yamada, K.M.; Geiger, B. (1998). Long-range and selective autoregulation of cell–cell or cell–matrix adhesions by cadherin or integrin ligands. J Cell Sci. 111:347–357.

    PubMed  CAS  Google Scholar 

  • Li, A.A.; MacDonald, N.C.; Chang, P.L. (2003). Effect of growth factors and extracellular matrix materials on the proliferation and differentiation of microencapsulated myoblasts. J Biomater Sci Polym Ed. 14:533–549.

    Article  PubMed  CAS  Google Scholar 

  • Liu, X.; Ma, P.X. (2004). Polymeric scaffolds for bone tissue engineering. Ann Biomed Eng. 32:477–4786.

    Article  PubMed  Google Scholar 

  • Ma, T.; Yang, S.T.; Kniss, D.A. (2001). Oxygen tension influences proliferation and differentiation in a tissue-engineered model of placental trophoblast-like cells. Tissue Eng. 7:495–506.

    Article  PubMed  CAS  Google Scholar 

  • Manley, P.; Lelkes, P.I. (2006). A novel real-time system to monitor cell aggregation and trajectories in rotating wall vessel bioreactors. J Biotechnol. 125:416–424.

    Article  PubMed  CAS  Google Scholar 

  • Margolis, L.; Hatfill, S.; Chuaqui, R.; Vocke, C.; Emmert-Buck, M.; Linehan, W.M.; Duray, P.H. (1999). Long term organ culture of human prostate tissue in a NASA-designed rotating wall bioreactor. J Urol 161:290–297.

    Article  PubMed  CAS  Google Scholar 

  • Melo, F.; Carey, D.J.; Brandan, E. (1996). Extracellular matrix is required for skeletal muscle differentiation but not myogenin expression. J Cell Biochem. 62:227–239.

    Article  PubMed  CAS  Google Scholar 

  • Miller, J.B. (1990). Myogenic programs of mouse muscle cell lines: expression of myosin heavy chain isoforms, MyoD1, and myogenin. J Cell Biol. 111:1149–1159.

    Article  PubMed  CAS  Google Scholar 

  • Molnar, G.; Schroedl, N.A.; Gonda, S.R.; Hartzell, C.R. (1997). Skeletal muscle satellite cells cultured in simulated microgravity. In Vitro Cell Dev Biol Anim. 33:386–391.

    Article  PubMed  CAS  Google Scholar 

  • Murshid, S.A.; Kamioka, H.; Ishihara, Y.; Ando, R.; Sugawara, Y.; Takano-Yamamoto, T. (2007). Actin and microtubule cytoskeletons of the processes of 3D-cultured MC3T3-E1 cells and osteocytes. J Bone Miner Metab. 25:151–158.

    Article  PubMed  CAS  Google Scholar 

  • Article by DOI: Nakanishi K; Dohmae N; Morishima N. (2007). Endoplasmic reticulum stress increases myofiber formation in vitro. FASEB J. Express (in press). doi:10.1096/fj.06-6408com.

  • O’Connor, K.C. (1999). Three-dimensional cultures of prostatic cells: tissue models for the development of novel anti-cancer therapies. Pharm Res. 16:486–493.

    Article  PubMed  CAS  Google Scholar 

  • Okano, T.; Matsuda, T. (1998). Tissue engineered skeletal muscle: preparation of highly dense, highly oriented hybrid muscular tissues. Cell Transplant. 7:71–82.

    Article  PubMed  CAS  Google Scholar 

  • Olson, E.N. (1992). Interplay between proliferation and differentiation within the myogenic lineage. Dev Biol. 154:261–272.

    Article  PubMed  CAS  Google Scholar 

  • Osses, N.; Brandan, E. (2002). ECM is required for skeletal muscle differentiation independently of muscle regulatory factor expression. Am J Physiol Cell Physiol. 282:C383–C394.

    PubMed  CAS  Google Scholar 

  • Pedrotty, D.M.; Koh, J.; Davis, B.H.; Taylor, D.A.; Wolf, P.; Niklason, L.E. (2005). Engineering skeletal myoblasts: roles of three-dimensional culture and electrical stimulation. Am J Physiol Heart Circ Physiol. 288:H1620–H1626.

    Article  PubMed  CAS  Google Scholar 

  • Qiu, Q.; Ducheyne, P.; Gao, H.; Ayyaswamy, P. (1998). Formation and differentiation of three-dimensional rat marrow stromal cell culture on microcarriers in a rotating-wall vessel. Tissue Eng. 4:19–34.

    Article  PubMed  CAS  Google Scholar 

  • Rowley, D.R. (1992). Characterization of a fetal urogenital sinus mesenchymal cell line U4F: secretion of a negative growth regulatory activity. In Vitro Cell Dev Biol. 28A:29–38.

    Article  PubMed  CAS  Google Scholar 

  • Smalley, K.S.; Lioni, M.; Herlyn, M. (2006). Life isn’t flat: taking cancer biology to the next dimension. In Vitro Cell Dev Biol Anim. 42:242–247.

    Article  PubMed  CAS  Google Scholar 

  • Sognier, M.A.; Marquette, M.L.; Byerly, D.L. (2004). Three-dimensional myoblast aggregates—effects of modeled microgravity. Mol Biol Cell. 15:349a.

    Google Scholar 

  • Soule, H.D.; Vazguez, J.; Long, A.; Albert, S.; Brennan, M. (1973). A human cell line from a pleural effusion derived from a breast carcinoma. J Natl Cancer Inst 51:1409–1416.

    PubMed  CAS  Google Scholar 

  • Stoker, A.W.; Streuli, C.H.; Martins-Green, M.; Bissell, M.J. (1990). Designer microenvironments for the analysis of cell and tissue function. Curr Opin Cell Biol. 2:864–874.

    Article  PubMed  CAS  Google Scholar 

  • Streuli, C.H.; Bailey, N.; Bissell, M.J. (1991). Control of mammary epithelial differentiation: basement membrane induces tissue-specific gene expression in the absence of cell–cell interaction and morphological polarity. J Cell Biol. 115:1383–1395.

    Article  PubMed  CAS  Google Scholar 

  • Timmins, N.E.; Harding, F.J.; Smart, C.; Brown, M.A.; Nielsen, L.K. (2005). Method for the generation and cultivation of functional three-dimensional mammary constructs without exogenous extracellular matrix. Cell Tissue Res. 320:207–210.

    Article  PubMed  CAS  Google Scholar 

  • Torgan, C.E.; Burge, S.S.; Collinsworth, A.M.; Truskey, G.A.; Kraus, W.E. (2000). Differentiation of mammalian skeletal muscle cells cultured on microcarrier beads in a rotating cell culture system. Med Biol Eng Comput. 38:583–590.

    Article  PubMed  CAS  Google Scholar 

  • Unsworth, B.R.; Lelkes, P.I. (1998). Growing tissues in microgravity. Nat Med. 4:901–907.

    Article  PubMed  CAS  Google Scholar 

  • Vandenburgh, H.H.; Shansky, J.; Karlisch, P.; Solerssi, R.L. (1993). Mechanical stimulation of skeletal muscle generates lipid-related second messengers by phospholipase activation. J Cell Physiol. 155:63–71.

    Article  PubMed  CAS  Google Scholar 

  • Vandenburgh, H.H.; Sheff, M.F.; Zacks, S.I. (1974). Chemical composition of isolated rat skeletal sarcolemma. J Membr Biol. 17:1–12.

    Article  PubMed  CAS  Google Scholar 

  • Walsh, F.S.; Ritter, M.A. (1981). Surface antigen differentiation during human myogenesis in culture. Nature. 289:60–64.

    Article  PubMed  CAS  Google Scholar 

  • Wood, M.A. (2007). Colloidal lithography and current fabrication techniques producing in-plane nanotopography for biological applications. J R Soc Interface. 4:1–17.

    Article  PubMed  CAS  Google Scholar 

  • Yasin, R.; Walsh, F.S.; Landon, D.N.; Thompson, E.J. (1983). New approaches to the study of human dystrophic muscle cells in culture. J Neurol Sci. 58:315–334.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Leoncio Vergara for assistance with the imaging of constructs. This research was supported in part by a NASA Graduate Student Research Fellowship Award (MM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele L. Marquette.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marquette, M.L., Byerly, D. & Sognier, M. A novel in vitro three-dimensional skeletal muscle model. In Vitro Cell.Dev.Biol.-Animal 43, 255–263 (2007). https://doi.org/10.1007/s11626-007-9054-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-007-9054-0

Keywords