Skip to main content
Log in

Astroglial injury in an ex vivo model: contributions to its analysis in enriched cell cultures

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

In vitro cell culture models have been proposed to analyze some of the complex structural and functional characteristics involved in astroglial changes after neural injury in vivo. This report contributes to analyze the proposed hypothesis that an experimentally induced discontinuity of a confluent cellular culture could represent a useful model for the analysis of the processes involved in a neural lesion. For this purpose, it was decided to characterize astroglial proliferation and dye coupling state after a “scratch wound” applied to confluent, astrocyte-enriched cell cultures, obtained from several rat brain regions. Proliferation was assessed in terms of bromodeoxyuridine nuclear incorporation as a function of lesion width, serum deprivation, time after confluence, brain region origin, postlesional culture medium changes and agitation, and after application of a gap-junction uncoupling agent. The proliferative reaction after injury was neither cell type-specific nor brain region specific, nor was significantly affected by neither of the above-mentioned variables. Furthermore, injury failed to significantly affect the astroglial dye coupling state. Results suggest that the proliferative response observed under present conditions would depend on the disruption of contact inhibition rather than on astroglial mitogenic signals released from the wound and operating by either extracellular or cell coupling mechanisms. Present results question the validity of astrocyte-enriched cell cultures as an experimental model of neural tissue injury in vivo, as they do not appear to reproduce fundamental characteristics expressed in situ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.

Similar content being viewed by others

References

  • Amat JA, Ishiguro H, Nakamura K, Norton W (1996) Phenotypic diversity and kinetics of proliferating microglia and astrocytes following cortical stab wounds. Glia 16:368–382

    Article  PubMed  CAS  Google Scholar 

  • Bähr M, Bonhoeffer F (1994) Perspectives on axonal regeneration in the mammalian CNS. Trends Neurosci 17:473–479

    Article  PubMed  Google Scholar 

  • Bovolenta P, Fernaud-Espinosa I, Menendez-Otero R, Nieto-Sampedro M (1997) Neurite outgrowth inhibitor of gliotic brain tissue. Mode of action and cellular location, studied with specific monoclonal antibodies. Eur J Neurosci 9:977–989

    Article  PubMed  CAS  Google Scholar 

  • Cheng G, Youssef BB, Markenscoff P, Zygourakis K (2006) Cell population dynamics modulate the rates of tissue growth processes. Biophys J 90:713–724

    Article  PubMed  CAS  Google Scholar 

  • Chou RC, Langan TJ (2003) In vitro synchronization of mammalian astrocytic cultures by serum deprivation. Brain Res Brain Res Protoc 11:162–167

    Article  PubMed  Google Scholar 

  • Coller H, Sang L, Roberts JM (2006) A new description of cellular quiescence. PLoS Biol 4:329–349

    Article  CAS  Google Scholar 

  • Dávalos D, Grutzendler J, Yang G, Kim JV, Zuo Y, Jung S, Littman D, Dustin M, Gan W (2005) ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci 8:752–758

    Article  PubMed  CAS  Google Scholar 

  • Eclancher F, Kehrli P, Labourdette G, Sensenbrenner M (1996) Basic fibroblast growth factor (bFGF) injection activates the glial reaction in the injured adult rat brain. Brain Res 737:201–214

    Article  PubMed  CAS  Google Scholar 

  • Faber-Elman A, Solomon A, Abraham JA, Marikovsky M, Schwartz M (1996) Involvement of wound-associated factors in rat brain astrocyte migratory response to axonal injury: in vitro stimulation. J Clin Invest 97:162–171

    PubMed  CAS  Google Scholar 

  • Fawcett J, Asher R (1999) The glial scar and central nervous system repair. Brain Res Bull 49:377–391

    Article  PubMed  CAS  Google Scholar 

  • Fetler L, Amigorena S (2005) Brain under surveillance: the microglia patrol. Science 309:392–393

    Article  PubMed  CAS  Google Scholar 

  • Franke H, Krugel U, Illes P (1999) P2 receptor-mediated proliferative effects on astrocytes in vivo. Glia 28:190–200

    Article  PubMed  CAS  Google Scholar 

  • Gayol S, Pannicke T, Reichenbach A, Colombo JA (1999) Cell–cell coupling in cultures of striatal and cortical astrocytes of the monkey Cebus apella. J Hirnforsch 39:473–479

    PubMed  CAS  Google Scholar 

  • Ghirnikar RS, Yu ACH, Eng LF (1994) Astrogliosis in culture: III. Effect of recombinant retrovirus expressing antisense glial fibrillary acidic protein RNA. J Neurosci Res 38:376–385

    Article  PubMed  CAS  Google Scholar 

  • Giaume Ch, McCarthy K (1996) Control of gap-junctional communication in astrocytic networks. Trends Neurosci 19:319–325

    Article  PubMed  CAS  Google Scholar 

  • Giulian D, Lachman LB (1985) Interleukin-1 stimulation of astroglial proliferation after brain injury. Science 228:497–499

    Article  PubMed  CAS  Google Scholar 

  • Giulian D, Vaca K, Corpuz M (1993) Brain glia release factors with opposing actions upon neuronal survival. J Neurosci 13:29–37

    PubMed  CAS  Google Scholar 

  • Hampton DW, Rhodes KE, Zhao C, Franklin RJM, Fawcwtt JW (2004) The response of oligodendrocytes precursor cells, astrocytes and microglia to a cortical stab injury, in the brain. Neuroscience 127:813–820

    Article  PubMed  CAS  Google Scholar 

  • Hayes O, Ramos B, Rodriguez LL, Aguilar A, Badia T, Castro FO (2005) Cell confluency is as efficient as serum starvation for inducing arrest in the G0/G1 phase of the cell cycle in granulose and fibroblast cells of cattle. Anim Reprod Sci 87:181–192

    Article  PubMed  CAS  Google Scholar 

  • Hindley S, Herman MAR, Rathbone MP (1994) Stimulation of reactive astrogliosis in vivo by extracellular adenosine diphosphate or an adenosine A2 receptor agonist. J Neurosci Res 38:399–406

    Article  PubMed  CAS  Google Scholar 

  • Hodges-Savola Ch, Rogers SD, Chilardi JR, Timm DR, Mantyh PW (1996) β-Adrenergic receptors regulate astrogliosis and cell proliferation in the central nervous system in vivo. Glia 17:52–62

    Article  PubMed  CAS  Google Scholar 

  • Hossain MZ, Peeling J, Sutherland GR, Hertzberg EL, Nagy JI (1994) Ischemia-induced cellular redistribution of astrocytic gap junctional protein connexin43 in rat brain. Brain Res 652:311–322

    Article  PubMed  CAS  Google Scholar 

  • Hou YJ, Yu ACH, García JMRZ, Aotaki-Keen A, Lee yL, Eng LF, Hjelmeland LJ, Menon VK (1995) Astrogliosis in culture. IV. Effects of basic fibroblast growth factor. J Neurosci Res 40:359–370

    Article  PubMed  CAS  Google Scholar 

  • Környei Z, Czirók A, Vicsek T, Madarász E (2000) Proliferative and migratory responses of astrocytes to in vitro injury. J Neurosci Res 61:421–429

    Article  PubMed  Google Scholar 

  • Landis DMD (1994) The early reactions of non-neuronal cells to brain injury. Annu Rev Neurosci 17:133–151

    Article  PubMed  CAS  Google Scholar 

  • Levenberg S, Yarden A, Kam Z, Geiger B (1999) p27 is involved in N-cadherin-mediated contact inhibition of cell growth and S-phase entry. Oncogene 18:869–876

    Article  PubMed  CAS  Google Scholar 

  • Lindsay RM (1986) Reactive gliosis. In: Federoff S, Vernadakis A (eds) Astrocytes, vol 3. Academic, New York, pp 231–262

    Google Scholar 

  • Louw DF, Masada T, Sutherlad G (1998) Ischemic neuronal injury is ameliorated by astrocyte activation. Can J Neurol Sci 25:102–107

    PubMed  CAS  Google Scholar 

  • Mandell JW, Gocan NC, Vandenberg SR (2001) Mechanical trauma induces rapid astroglial activation of ERK/MAP kinase: evidence for a paracrine signal. Glia 34:283–295

    Article  PubMed  CAS  Google Scholar 

  • McMillian MK, Thai L, Hong JS, O’Callaghan JP, Pennypacker KR (1994) Brain injury in a dish: a model for reactive gliosis. Trends Neurosci 17:138–142

    Article  PubMed  CAS  Google Scholar 

  • Menet V, Giménez y Ribotta M, Chauvet N, Drian MJ, Lannoy J, Colucci-Guyon E, Privat A (2001) Inactivation of the glial fibrillary acidic protein gene, but not that of vimentin, improves neuronal survival and neurite growth by modifying adhesion molecule expression. J Neurosci 21:6147–6158

    PubMed  CAS  Google Scholar 

  • Mukhin AG, Ivanova SA, Allen JW, Faden AI (1998) Mechanical injury to neuronal/glial cultures in microplates: role of NMDA receptors and pH in secondary neuronal death. J Neurosci Res 51:748–758

    Article  PubMed  CAS  Google Scholar 

  • Nadal A, Fuentes E, Pastor J, McNaughton PA (1995) Plasma albumin is a potent trigger of calcium signals and DNA synthesis in astrocytes. Proc Natl Acad Sci USA 92:1426–1430

    Article  PubMed  CAS  Google Scholar 

  • Nakatsuji Y, Miller RH (1998) Homotypic cell contact-dependent inhibition of astrocyte proliferation. Glia 22:379–389

    Article  PubMed  CAS  Google Scholar 

  • Nakatsuji Y, Miller RH (2001) Density dependent modulation of cell cycle protein expression in astrocytes. J Neurosci Res 66:487–496

    Article  PubMed  CAS  Google Scholar 

  • Norenberg MD (1994) Astrocyte responses to CNS injury. J Neuropathol Exp Neurol 53:213–220

    Article  PubMed  CAS  Google Scholar 

  • Ochalski PAY, Sawchuk MA, Hertzberg EL, Nagy JI (1995) Astrocytic gap junction removal, connexin 43 redistribution, and epitope masking at excitatory amino acid lesion sites in rat brain. Glia 14:279–294

    Article  PubMed  CAS  Google Scholar 

  • Oh Y, Markelonis G, Oh T (1993) Effects of interleukin-1β and tumor necrosis factor α on the expression of glial fibrillary acidic protein and transferrin in cultured astrocytes. Glia 8:77–86

    Article  PubMed  CAS  Google Scholar 

  • Pforte C, Henrich-Noack P, Baldauf K, Reymann KG (2005) Increase in proliferation and gliogenesis but decrease of early neurogenesis in the rat forebrain shortly after transient global ischemia. Neuroscience 136:1133–1146

    Article  PubMed  CAS  Google Scholar 

  • Privat A (2003) Astrocytes as support for axonal regeneration in the central nervous system of mammals. Glia 43:91–93

    Article  PubMed  CAS  Google Scholar 

  • Rathbone M, Middlemiss P, Andrew C, Caciagli F, Ciccarelli R, Di Iorio P, Huang R (1998) The trophic effects of purines and purinergic signaling in pathologic reactions of astrocytes. Alzheimer Dis Assoc Disord 12:S36–S45

    Article  PubMed  CAS  Google Scholar 

  • Roitbak T, Syková E (1999) Diffusion barriers evoked in the rat cortex by reactive astrogliosis. Glia 28:40–48

    Article  PubMed  CAS  Google Scholar 

  • Rozental R, Srinivas M, Spray DC (2001) How to close a gap junction channel. Efficacies and potencies of uncoupling agents. Methods Mol Biol 154:447–476

    PubMed  CAS  Google Scholar 

  • Skoff RP (1975) The fine structure of pulse labeled (3-H-thymidine cells) in degenerating rat optic nerve. J Comp Neurol 161:595–611

    Article  PubMed  CAS  Google Scholar 

  • Sivron T, Schwartz M (1995) Glial cell types, lineages, and response to injury in rat and fish: implications for regeneration. Glia 13:157–165

    Article  PubMed  CAS  Google Scholar 

  • Soler C, Grangeasse C, Baggetto LG, Damour O (1999) Dermal fibroblast proliferation is improved by beta-catenin overexpression and inhibited by E-cadherin expression. FEBS Lett 442:178–182

    Article  PubMed  CAS  Google Scholar 

  • Wang K, Bekar L, Furber K, Walz W (2004) Vimentin-expressing proximal reactive astrocytes correlate with migration rather than proliferation following focal brain injury. Brain Res 1024:193–202

    Article  PubMed  CAS  Google Scholar 

  • Wilkin GP, Marriott DR, Cholewinski AJ (1990) Astrocyte heterogeneity. Trends Neurosci 13:43–46

    Article  PubMed  CAS  Google Scholar 

  • Wu VW, Schwartz JP (1998) Cell culture models for reactive gliosis: new perspectives. J Neurosci Res 51:675–681

    Article  PubMed  CAS  Google Scholar 

  • Yong VW, Moumdjian R, Yong F, Ruijs TC, Freedman MS, Cashman N, Antel J (1991) Gamma-interferon promotes proliferation of adult human astrocytes in vitro and reactive gliosis in the adult mouse brain in vivo. Proc Natl Acad Sci USA 88:7016–7020

    Article  PubMed  CAS  Google Scholar 

  • Yu ACH, Lee YL, Eng LF (1993) Astrogliosis in culture: I. The model and the effect of antisense oligonucleotides on glial fibrillary acidic protein synthesis. J Neurosci Res 34:295–303

    Article  PubMed  CAS  Google Scholar 

  • Zegers MM, Forget MA, Chernoff J, Mostov KE, ter Beest MB, Hansen SH (2003) Pak1 and PIX regulate contact inhibition during epithelial wound healing. EMBO J 22:4155–4165

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Administrative and technical support by Beatriz Stuto (CONICET) and Cristina Juarez (CONICET) are gratefully acknowledged. The authors also thank H. D. Reisin (U.N.A.) for critically reviewing the manuscript. Support was provided in part by FONCYT (PICT #01-03465/1998, PICT#14109/2003), Fundación Conectar, CONICET (PIP 5106), San Jorge Emprendimientos S.A., Chevron Argentina S.R.L., and Fundación R. Baron.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge A. Colombo.

Additional information

Editor: J. Denry Sato

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lanosa, X.A., Colombo, J.A. Astroglial injury in an ex vivo model: contributions to its analysis in enriched cell cultures. In Vitro Cell.Dev.Biol.-Animal 43, 186–195 (2007). https://doi.org/10.1007/s11626-007-9038-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-007-9038-0

Keywords

Navigation