Skip to main content
Log in

Establishment and characterization of a primary canine duodenal epithelial cell culture

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

Many mechanisms involved in the pathogenesis of chronic enteropathies or host–pathogen interactions in canine intestine have not been elucidated so far. Next to the clinical and in vivo research tools, an in vitro model of canine intestinal cell culture would be very helpful for studies at the cellular level. Therefore, the purpose of this study was to establish and characterize a primary canine duodenal epithelial cell culture. Neonatal duodenum was disrupted with trypsin-ethylenediaminetetraacetic acid (EDTA) and the mucosa scraped off and digested with collagenase and dispase. After centrifugation on a 2% sorbitol gradient, the cells were incubated at 37° C in OptiMEM supplemented with Primocin, epidermal growth factor, insulin, hydrocortisone, and 10% fetal calf serum (FCS). After 24 h, the FCS concentration was reduced to 2.5%, and the temperature decreased to 33° C. With this method, the cultures were growing to confluent monolayers within 5–6 d and remained viable for an average of 2 wk. Their epithelial nature was confirmed by electron microscopy and immunofluorescence staining using antibodies directed against specific cytokeratins, desmosomes, and tight junctions. The intestinal cells proliferated, as evidenced by immunolabeling with a Ki-67 antibody, and cryptal cell subpopulations could be identified. Furthermore, alkaline phosphatase and sucrase activity were detected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Aldhous, M. C.; Shmakov, A. N.; Bode, J., et al. Characterization of conditions for the primary culture of human small intestinal epithelial cells. Clin. Exp. Immunol. 125:32–40.2001.

    Article  PubMed  CAS  Google Scholar 

  • Allenspach, K.; Gaschen, F. Chronic intestinal diseases in the dog: a review. Schweiz. Arch. Tierheilkd. 145(5):209–219, 221-2.2003.

    Article  PubMed  CAS  Google Scholar 

  • Calnek, D.; Quaroni, A. Differential localization by in situ hybridization of distinct keratin mRNA species during intestinal epithelial cell development and differentiation. Differentiation 53:95–104.1993.

    Article  PubMed  CAS  Google Scholar 

  • Duchmann, R. I.; Kaiser, E.; Hermann, W., et al. Tolerance exists towards resident intestinal flora but is broken in active inflammatory bowel disease (IBD). Clin. Exp. Immunol. 102:448–455.1995.

    Article  PubMed  CAS  Google Scholar 

  • Engelhardt, P.; Wyder, M.; Zurbriggen, A., et al. Canine disempter virus associated proliferation of canine footpad keratinocytes in vitro. Vet. Microbiol. 107:1–12.2005.

    Article  PubMed  CAS  Google Scholar 

  • Evans, G. S.; Flint, N.; Somers, A. S., et al. The development of a method for the preparation of rat intestinal epithelial cell primary cultures. J. Cell Sci. 101:219–231.1992.

    PubMed  Google Scholar 

  • Föllmann, W.; Weber, S.; Birkner, S. Primary cell cultures of bovine colon epithelium: isolation and cell culture of colonocyte. Toxicol. In Vitro 14:435–445.2000.

    Article  PubMed  Google Scholar 

  • Fre, S.; Huyghe, M.; Mourikis, P., et al. Notch signals control the fate of immature progenitor cells in the intestine. Nature 435:964–968.2005.

    Article  PubMed  CAS  Google Scholar 

  • German, A. J.; Hall, E. J.; Day, M. J. Chronic intestinal inflammation and intestinal disease in dogs. J. Vet. Intern. Med. 17:8–20.2003.

    Article  PubMed  CAS  Google Scholar 

  • Grossmann, J.; Walther, K.; Artinger, M., et al. Progress on isolation and short-term ex-vivo culture of highly purified non-apoptotic human intestinal cells (IEC). Eur. J. Cell. Biol. 82:262–270.2003.

    Article  PubMed  CAS  Google Scholar 

  • Hauck, A. L.; Swanson, K. S.; Kenis, P. J. A., et al. Twists and turns in the development and maintenance of the mammalian small intestine epithelium. Birth Defects Res C Embryo Today 75:58–71.2005.

    Article  PubMed  CAS  Google Scholar 

  • Hemphill, A.; Croft, S. L. Electron microscopy in parasitology. In: Rogan, M. ed. Analytical parasitology. Springer Verlag, Heidelberg, Germany; 1997:227–268.

    Google Scholar 

  • Hershberg, R. M.; Mayer, L. F. Antigen processing and presentation by intestinal epithelial cells—polarity and complexity. Immunol. Today 21:123–128.2000.

    Article  PubMed  CAS  Google Scholar 

  • Jung, H. C.; Eckmann, L.; Yang, S. K., et al. A distinct array of proinflammatory cytokines is expressed in human colon epithelial cells in response to bacterial invasion. J. Clin. Invest. 95:55–65.1995.

    Article  PubMed  CAS  Google Scholar 

  • Kaeffer, B. Mammalian intestinal epithelial cells in primary culture: a mini-review. In Vitro Cell Dev. Biol. Anim. 38:123–134.2002.

    Article  PubMed  Google Scholar 

  • Kedinger, M.; Duluc, I.; Fritsch, C., et al. Intestinal epithelial–mesenchymal cell interactions. Ann. N Y Acad. Sci. 859:1–17.1998.

    Article  PubMed  CAS  Google Scholar 

  • Pageot, L. P.; Perreault, N.; Basora, N., et al. Human cell models to study small intestinal functions: recapitulation of the crypt-villus axis. Microsc. Res. Tech. 49:394–406.2000.

    Article  PubMed  CAS  Google Scholar 

  • Panja, A. A novel method for the establishment of a pure population of nontransformed human intestinal primary epithelial cell (HIPEC) lines in long term culture. Lab. Invest. 80:1473–1475.2000.

    PubMed  CAS  Google Scholar 

  • Perreault, N.; Beaulieu, J. F. Use of the dissociating enzyme thermolysin to generate viable human normal intestinal epithelial cell cultures. Exp. Cell Res. 224:354–364.1996.

    Article  PubMed  CAS  Google Scholar 

  • Perreault, N.; Beaulieu, J. F. Primary cultures of fully differentiated and pure human intestinal epithelial cells. Exp. Cell. Res. 245:34–42.1998.

    Article  PubMed  CAS  Google Scholar 

  • Plotkin, G. R.; Isselbacher, K. J. Secondary disaccharidase deficiency in adult celiac disease (nontropical sprue) and other malabsorption states. New Engl. J. Med. 271:1033–1037.1964.

    Google Scholar 

  • Quaroni, A.; Hochman, J. Development of intestinal cell culture models for drug transport and metabolism studies. Adv. Drug Deliv. Res. 22:3–52.1996.

    Article  CAS  Google Scholar 

  • Quaroni, A.; Tian, J. Q.; Göke, M., et al. Glucocorticoids have pleiotropic effects on small intestinal crypt cells. Am. J. Physiol. Gastrointest. Liver Physiol. 277:G1027–G1040.1999.

    Google Scholar 

  • Saiwaki, T.; Kotera, I.; Sasaki, M., et al. In vivo dynamics and kinetics of pKi-67: transition from a mobile to an immobile form at the onset of anaphase. Exp. Cell Res. 308:123–134.2005.

    Article  PubMed  CAS  Google Scholar 

  • Savkovic, S. D.; Koutsouris, A.; Hecht, G. Activation of NF-kappaB in intestinal epithelial cells by enteropathogenic Escherichia coli. Am. J. Physiol. 273:C1160–C1167.1997.

    PubMed  CAS  Google Scholar 

  • Stettler, M.; Siles-Lucas, M.; Sarciron, E., et al. Echinococcus multilocularis alkaline phosphatase as a marker for metacestode damage induced by in vitro drug treatment with albendazole sulfoxide and albendazole sulfone. Antimicrob. Agents Chemother. 45:2256–2262.2001.

    Article  PubMed  CAS  Google Scholar 

  • Swerdlow, M.; Kennedy, D.; Clayton, D., et al. Cultured colonic epithelial cells express pattern recognition receptors. In Proceedings 22nd ACVIM Forum 853.2004.

  • Weng, X. H.; Beyenbach, K. W.; Quaroni, A. Cultured monolayers of the dog jejunum with the structural and functional properties resembling the normal epithelium. Am. J. Physiol. Gastrointest. Liver Physiol. 288:G705–G717.2005.

    Article  PubMed  CAS  Google Scholar 

  • Wong, M. H. Regulation of intestinal stem cells. J. Investig. Dermatol. Symp. Proc. 9:224–228.2004.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Prof. Beyenbach and Prof. Quaroni for providing the monoclonal antibody TS23 specific to the glycosylated form of Notch-1 and Dr. Herring and Prof. Beaulieu for providing the MIM 1/39 antibody, an intestinal crypt cell marker. Furthermore, the authors would like to acknowledge Ursula Luginbühl for sucrase activity measurement, and many thanks are addressed to Eliane Mueller for advice in immunofluorescence staining.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iwan A. Burgener.

Additional information

Editor: J. Denry Sato

Julia L. Golaz and Nathalie Vonlaufen contributed equally to this work and are joint first authors. Supported in part by the Vetsuisse research foundation, the Foundation Research 3R (project No. 85/03), and the Swiss National Science Foundation (3100A0-112532).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Golaz, J.L., Vonlaufen, N., Hemphill, A. et al. Establishment and characterization of a primary canine duodenal epithelial cell culture. In Vitro Cell.Dev.Biol.-Animal 43, 176–185 (2007). https://doi.org/10.1007/s11626-007-9034-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-007-9034-4

Keywords

Navigation