Skip to main content
Log in

Protease activity in protein-free NSO myeloma cell cultures

  • Articles
  • Biotechnology
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

Zymography of concentrated conditioned medium (CM) from protein-free NS0 myeloma cell cultures showed that this cell line produced and released/secreted several proteases. Two caseinolytic activities at 45–50 and 90 kDa were identified as aspartic acid proteases, and at least two cathepsins of the papain-like cysteine protease family with molecular masses of 30–35 kDa were found by gelatin zymography. One of these cathepsins was identified as cathepsin L by using an enzyme assay exploiting the substrate Z-Phe-Arg-AMC and the inhibitor Z-Phe-Tyr-t(Bu)-DMK. The aspartic acid and cysteine proteases were active only at acidic pH and are therefore not a potential risk for degrading the product or affecting cell growth during culture. Secreted proforms of cathepsins may, however, possess mitogenic functions, but addition of anti-procathepsin L antibodies to NS0 cultures did not influence proliferation. The recombinant antibody product was not degraded in cell-free CM incubated at pH 7, but when the pH was decreased to 3.5–4, the aspartic acid proteases degraded the product. Gelatin zymography also revealed the presence of several serine proteases in NS0 CM, one at 85 kDa and two at 50 kDa, with pH optima close to culture pH. Addition of the serine protease inhibitor aprotinin significantly increased the specific proliferation rate as compared to the control. In addition to these data, N-terminal amino acid sequencing identified two proteins in NS0 CM as the protease inhibitors secretory leukocyte protease inhibitor and cystatin C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abe, T.; Tominaga, Y.; Kikuchi, T.; Watanabe, A.; Satoh, K.; Watanabe, Y.; Nukiwa, T. Bacterial pneumonia causes augmented expression of the secretory leukoprotease inhibitor gene in the murine lung. Am. J. Respir. Crit. Care Med. 156:1235–1240; 1997.

    PubMed  CAS  Google Scholar 

  • Asami, O.; Nakamura, T.; Mura, T.; Ichihara, A. Identification of trypsin inhibitor in bovine pituitary extracts as a survival factor for adult rat hepatocytes in primary culture. J. Biochem. 95:299–309; 1984.

    PubMed  CAS  Google Scholar 

  • Catalioto, R. M.; Negrel, R.; Gaillard, D.; Ailhaud, G. Growth-promoting activity in serum-free medium of kallikreinlike arginylesteropeptidases from rat submaxillary gland. J. Cell Physiol. 130:352–360; 1987.

    Article  PubMed  CAS  Google Scholar 

  • Cook, J. R.; Chen, J. K. Enhancement of transformed cell growth in agar by serine protease inhibitors. J. Cell. Physiol 136:188–193; 1988.

    Article  PubMed  CAS  Google Scholar 

  • Davis, H.; Gascho, C.; Kiernan, J. A. Effects of aprotinin on organ cultures of the rat’s kidney. In Vitro 12:192–197; 1976.

    PubMed  CAS  Google Scholar 

  • Elliott, P.; Hohmann, A.; Spanos, J. Protease expression in the supernatant of Chinese Hamster Ovary cells grown in serum-free culture. Biotechnol. Lett. 25:1949–1952; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Ellis, K. J.; Morrison, J. F. Buffers of constant ionic strength for studying pH-dependent processes. Methods Enzymol. 87:405–426; 1982.

    Article  PubMed  CAS  Google Scholar 

  • Fritz, H.; Wunderer, G. Biochemistry and applications of aprotinin, the kallikrein inhibitor from bovine organs. Arzneimittel-Forschung 33:479–494; 1983.

    PubMed  CAS  Google Scholar 

  • Ghetie, V.; Mihaescu, S. The hydrolysis of rabbit immunoglobulin G with purified cathepsins D and E. Immunochemistry 10:251–255; 1973.

    Article  PubMed  CAS  Google Scholar 

  • Hargreaves, P. G.; Wang, F.; Anteliff, J.; Murphy, G.; Lawry, J.; Russell, R. G.; Croucher, P. I. Human myeloma cells shed the interleukin-6 receptor: inhibition by tissue inhibitor of metalloprotease-3 and a hydroxamate-based metalloprotease inhibitor. Br. J. Haematol. 101:694–702; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Henriksen, P. A.; Hitt, M.; Xing, Z. et al. Adenoviral gene delivery of elafin and secretory leukocyte protease inhibitor attenuates NF-kappa B-dependent inflammatory responses of human endothelial cells and macrophages to atherogenic stimuli. J. Immunol. 172:4535–4544; 2004.

    PubMed  CAS  Google Scholar 

  • Hewlett, G. Apropos aprotinin: a review. Biotechnology (NY) 8:565–566, 568; 1990.

    Article  CAS  Google Scholar 

  • Holen, I.; Drury, N. L.; Hargreaves, P. G.; Croucher, P. I. Evidence of a role for a non-matrix-type metalloprotease activity in the shedding of syndecan-1 from human myeloma cells. Br. J. Haematol. 114:414–421; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Hunt, L. T.; Barker, W. C.; Dayhoff, M. O. Epdermal growth factor: internal duplication and probable relation to pancreatic secretory trypsin inhibitor. Biochem. Biophys. Res. Commun. 60: 1020–8; 1974.

    Article  PubMed  CAS  Google Scholar 

  • Ishidoh, K.; Kominami, E.; Gene regulation and extracellular functions of procathepsin L. Biol. Chem. 379:131–135; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Karl, D. W.; Donovan, M.; Flickinger, M. C. A novel acid protease released by hybridoma cells. Cytotechnology 3:157–169; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Kelly, T.; Borset, M.; Abe, E.; Gaddy-Kurten, D.; Sanderson, R. D. Matrix metalloproteases in multiple myeloma. Leuk. Lymphoma 37:273–281; 2000.

    PubMed  CAS  Google Scholar 

  • Kirschke, H.; Eerola, R.; Hopsu-Havu, V. K.; Bromme, D.; Vuorio, E. Antisense RNA inhibition of cathepsin L expression reduces tumorigenicity of malignant cells. Eur. J. Cancer 36:787–795; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Kratje, R. B.; Lind, W.; Wagner, R. Evaluation of the proteolytic potential of in vitro-cultivated hybridoma and recombinant mammalian cells. J. Biotechnol. 32:107–125; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Leber, T. M.; Balkwill, F. R. Zymography: a single-step staining method for quantitation of proteolytic activity on substrate gels. Anal. Biochem. 249:24–28; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Li, F.; An, H.; Seymour, T. A.; Bradford, S.; Morrissey, M. T.; Bailey, G. S.; Helmrich, A.; Barnes, D. W. Molecular cloning, sequence analysis and expression distribution of rainbow trout (Oncorhynchus mykiss) cystatin C. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 121B:135–143; 1998.

    Article  CAS  Google Scholar 

  • Nakamura, T.; Asami, O.; Tanaka, K.; Ichihara, A. Increased survival of rat hepatocytes in serum-free medium by inhibition of a trypsin-like protease associated with their plasma membranes. Exp. Cell Res. 155:81–91; 1984.

    Article  PubMed  CAS  Google Scholar 

  • Neurath, H. Evolution of proteolytic enzymes. Science 224:350–357; 1984.

    Article  PubMed  CAS  Google Scholar 

  • Pandiella, A.; Bosenberg, M. W.; Huang, E. J.; Besmer, P.; Massague, J. Cleavage of membrane-anchored growth factors involves distinct protease activities regulated through common mechanisms. J. Biol. Chem. 267:24028–24033; 1992.

    PubMed  CAS  Google Scholar 

  • Schlaeger, E. J.; Eggimann, B.; Gast, A. Proteolytic activity in the culture supernatants of mouse hybridoma cells. Dev. Biol. Stand. 66:403–408; 1987.

    PubMed  CAS  Google Scholar 

  • Solem, M.; Rawson, C.; Lindburg, K.; Barnes, D. Transforming growth factor beta regulates cystatin C in serum-free mouse embryo (SFME) cells. Biochem. Biophys. Res. Commun. 172:945–951; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Spens, E.; Häggström, L. Defined protein-free NS0 myeloma cell cultures: stimulation of proliferation by conditioned medium factors. Biotechnol. Prog. 21:87–95; 2005.

    Article  PubMed  CAS  Google Scholar 

  • Tjin, E. P. M.; Derksen, P. W. B.; Kataoka, H.; Spaargaren, M.; Pals, S. T. Multiple myeloma cells catalyze hepatocyte growth factor (HGF) activation by secreting the serine protease HGF-activator. Blood 104:2172–2175; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Turk, B.; Turk, D.; Turk, V. Lysosomal cysteine proteases: more than scavengers. Biochim. Biophys. Acta 1477:98–111; 2000.

    PubMed  CAS  Google Scholar 

  • Van Erp, R.; Adorf, M.; Van Sommeren, A. P. G.; Gribnau, T. C. J. Monitoring of the production of monoclonal antibodies by hybridomas. Part II: characterization and purification of acid proteases present in cell culture supernatant. J. Biotechnol. 20:249–261; 1991.

    Article  PubMed  Google Scholar 

  • Weber, E.; Gunther, D.; Laube, F.; Wiederanders, B.; Kirschke, H. Hybridoma cells producing antibodies to cathepsin L have greatly reduced potential for tumour growth. J. Cancer Res. Clin. Oncol. 120:564–567; 1994.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lena Häggström.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spens, E., Häggström, L. Protease activity in protein-free NSO myeloma cell cultures. In Vitro Cell.Dev.Biol.-Animal 41, 330–336 (2005). https://doi.org/10.1007/s11626-005-0004-4

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-005-0004-4

Key words

Navigation