Skip to main content

Enhanced myogenic differentiation by extracellular matrix is regulated at the early stages of myogenesis

Summary

Myogenic cell lines have been used extensively in the study of skeletal muscle development, regeneration, and homeostasis. To induce myogenic differentiation, culture media composed of a wide variety of growth factors and other additives have been used. Because the diversity in these components may modulate the differentiation process differentially, we describe a differentiation protocol that does not require the introduction of any factors to the differentiation media (DM) other than those present in the growth media. By culturing C2C12 skeletal myocytes on a coating of diluted Matrigel, a soluble basement membrane, consisting of collagen IV, laminin, heparan sulfate proteoglycans, and entactin, myogenic differentiation was accomplished by mere serum reduction. Assessment of myotube formation, creatine kinase activity, myosin heavy chain-fast, and myogenin demonstrated that the kinetics and extent of myogenic differentiation were superior using this protocol, compared with a commonly used differentiation protocol, in which an extracellular matrix is not provided and the DM contains horse serum. In addition, the elevated transactivation of a troponin-I promoter reporter construct suggested that myogenesis was enhanced at the transcriptional level. Finally, assessment of genomic deoxyribonucleic acid content revealed that the Matrigel differentiation protocol resulted in lowered proliferation. This protocol may aid studies aimed at elucidating mechanisms of myogenic differentiation, where a homogeneous population of myotubes is preferred.

This is a preview of subscription content, access via your institution.

References

  1. Blau, H. M.; Pavlath, G. K.; Hardeman, E. C., et al. Plasticity of the differentiated state. Science 230:758–766; 1985.

    PubMed  Article  CAS  Google Scholar 

  2. Bradford, M. M. A rapid and sensitive method for the quantiation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248–254; 1976.

    PubMed  Article  CAS  Google Scholar 

  3. Buck, M.; Chojkier, M. Muscle wasting and dedifferentiation induced by oxidative stress in a murine model of cachexia is prevented by inhibitors of nitric oxide synthesis and antioxidants. EMBO J. 15:1753–1765; 1996.

    PubMed  CAS  Google Scholar 

  4. del Aguila, L. F.; Claffey, K. P.; Kirwan, J. P. TNF-alpha impairs insulin signaling and insulin stimulation of glucose uptake in C2C12 muscle cells. Am. J. Physiol. 276:E849-E855; 1999.

    PubMed  Google Scholar 

  5. Frost, R. A.; Lang, C. H.; Gelato, M. C. Transient exposure of human myoblasts to tumor necrosis factor-alpha inhibits serum and insulin-like growth factor-I stimulated protein synthesis. Endocrinology 138:4153–4159; 1997.

    PubMed  Article  CAS  Google Scholar 

  6. Funanage, V. L.; Smith, S. M.; Minnich, M. A. Entactin promotes adhesion and long-term maintenance of cultured regenerated skeletal myotubes. J. Cell Physiol. 150:251–257; 1992.

    PubMed  Article  CAS  Google Scholar 

  7. Godfrey, E. W.; Gradall, K. S. Basal lamina molecules are concentrated in myogenic regions of the mouse limb bud. Anat. Embryol. (Berl.) 198:481–486; 1998.

    Article  CAS  Google Scholar 

  8. Gros, L.; Riu, E.; Montoliu, L., et al. Insulin production by engineered muscle cells. Hum. Gene. Ther. 10:1207–1217; 1999.

    PubMed  Article  CAS  Google Scholar 

  9. Guttridge, D. C.; Albanese, C.; Reuther, J. Y., et al. NF-kappaB controls cell growth and differentiation through transcriptional regulation of cyclin D1. Mol. Cell. Biol. 19:5785–5799; 1999.

    PubMed  CAS  Google Scholar 

  10. Guttridge, D. C.; Mayo, M. W.; Madrid, L. V., et al. NF-kappB-induced loss of MyoD messenger RNA: possible role in muscle decay and cachexia [see comments]. Science 289:2363–2366; 2000.

    PubMed  Article  CAS  Google Scholar 

  11. Halevy, O.; Lerman, O. Retinoic acid induces adult muscle cell differentiation mediated by the retinoic acid receptor-alpha. J. Cell Physiol. 154:566–572; 1993.

    PubMed  Article  CAS  Google Scholar 

  12. Howard, P. L.; Dally, G. Y.; Ditta, S. D., et al. Dystrophin isoforms DP71 and DP427 have distinct roles in myogenic cells. Muscle Nerve 22:16–27; 1999.

    PubMed  Article  CAS  Google Scholar 

  13. Kleinman, H. K.; McGarvey, M. L.; Hassell, J. R., et al. Basement membrane complexes with biological activity. Biochemistry 25:312–318; 1986.

    PubMed  Article  CAS  Google Scholar 

  14. Langen, R. C.; Schols, A. M.; Kelders, M. C., et al. Inflammatory cytokines-inhibit myogenic differentiation through activation of nuclear factorkappaB. FASEB J. 15:1169–1180; 2001.

    PubMed  Article  CAS  Google Scholar 

  15. Li, Y. P.; Schwartz, R. J.; Waddell, I. D., et al. Skeletal muscle myocytes undergo protein loss and reactive oxygen-mediated NF-kappaB activation in response to tumor necrosis factor alpha. FASEB J. 12:871–880; 1998.

    PubMed  CAS  Google Scholar 

  16. Maley, M. A.; Davies, M. J.; Grounds, M. D. Extracellular matrix, growth factors, genetics: their influence on cell proliferation and myotube formation in primary cultures of adult mouse skeletal muscle. Exp. Cell Res. 219:169–179; 1995.

    PubMed  Article  CAS  Google Scholar 

  17. Melo, F.; Carey, D. J.; Brandan, E. Extracellular matrix is required for skeletal muscle differentiation but not myogenin expression. J. Cell Biochem. 62:227–239; 1996.

    PubMed  Article  CAS  Google Scholar 

  18. Musaro, A.; Rosenthal, N. Maturation of the myogenic program is induced by postmitotic expression of insulin-like growth factor I. Mol. Cell Biol. 19:3115–3124; 1999.

    PubMed  CAS  Google Scholar 

  19. Ocalan, M.; Goodman, S. L.; Kuhl, U., et al. Laminin alters cell shape and stimulates motility and proliferation of murine skeletal myoblasts. Dev. Biol. 125:158–167; 1988.

    PubMed  Article  CAS  Google Scholar 

  20. Olson, E. N. Interplay between proliferation and differentiation within the myogenic lineage. Dev. Biol. 154:261–272; 1992.

    PubMed  Article  CAS  Google Scholar 

  21. Stewart, C. E.; James, P. L.; Fant, M. E., et al. Overexpression of insulin-like growth factor-II induces accelerated myoblast differentiation J. Cell Physiol. 169:23–32; 1996.

    PubMed  Article  CAS  Google Scholar 

  22. Stewart, C. E.; Rotwein, P. Insulin-like growth factor-II is an autocrine survival factor for differentiating myoblasts. J. Biol. Chem. 271:11330–11338; 1996.

    PubMed  Article  CAS  Google Scholar 

  23. Szasz, G.; Gruber, W.; Bernt, E. Creatine kinase in serum: 1. Determination of optimum reaction conditions. Clin. Chem. 22:650–656; 1976.

    PubMed  CAS  Google Scholar 

  24. Wang, J.; Walsh, K. Resistance to apoptosis conferred by Cdk inhibitors during myocyte differentiation. Science 273:359–361; 1996.

    PubMed  Article  CAS  Google Scholar 

  25. Yaffe, D.; Saxel, O. Serial passaging and differentiation of myogenic cells isolated from dystrophic mouse muscle. Nature 270:725–727; 1977.

    PubMed  Article  CAS  Google Scholar 

  26. Yoshida, N.; Yoshida, K.; Koishi, K., et al. Cell heterogeneity upon myogenic differentiation: down-regulation of MyoD and Myf-5 generates ‘reserve cells’. J. Cell Sci. 111:769–779; 1998.

    PubMed  CAS  Google Scholar 

  27. Yun, K.; Wold, B. Skeletal muscle determination and differentiation: story of a core regulatory network and its context. Curr. Opin. Cell Biol. 8:877–889; 1996.

    PubMed  Article  CAS  Google Scholar 

  28. Zentella, A.; Manogue, K.; Cerami, A. Cachectin/TNF-mediated lactate production in cultured myocytes is linked to activation of a futile substrate cycle. Cytokine 5:436–447; 1993.

    PubMed  Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ramon C. J. Langen.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Langen, R.C.J., Schols, A.M.W.J., Kelders, M.C.J.M. et al. Enhanced myogenic differentiation by extracellular matrix is regulated at the early stages of myogenesis. In Vitro Cell.Dev.Biol.-Animal 39, 163–169 (2003). https://doi.org/10.1007/s11626-003-0011-2

Download citation

Key words

  • skeletal muscle
  • matrigel
  • horse serum
  • C2C12 cells