Skip to main content
Log in

Designing sustainability in blues: the limits of technospatial growth imaginaries

  • Special Feature: Original Article
  • Blue Degrowth and the Politics of the Sea: Rethinking the Blue Economy
  • Published:
Sustainability Science Aims and scope Submit manuscript

Abstract

In the midst of a global food crisis, the late 2000s saw tensions between rising food prices and demands for biofuels coalesce into a “food versus fuel” debate. In response to ensuing public outcries, governmental agencies, and researchers across the globe began mobilizing around alternative biofuel feedstock. Among these materials, algae emerged as the most “hopeful” sustainable alternative in producing biofuels. This article examines algal biofuel production systems designed offshore and integrated with wastewater treatment and carbon dioxide absorption processes to revitalize faith in biofuels in the blue economy. It discusses what makes algal biofuels sustainable by examining the ways practitioners talk about and design these integrated systems. Against the common refrain that algae’s photosynthetic and reproductive capacity makes these systems sustainable, this article underlines that there is nothing natural, innate, about algae to add to sustainable blue economies. Rather, algae become naturalized as biofuel source and bioremediation technologies through technoscientific discourses and interventions, which embed and reproduce anthropocentric approach to sustainability that centers on the ideology of growth. By drawing particular attention to the ways that integrated algal biofuel production systems depend on the constant generation of industrial waste, this article problematizes anthropocentric sustainability imaginaries and claims for imagining sustainability otherwise through the lens of blue degrowth to create a radical socio-ecological change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

The image retrieved on-line (Trent 2018)

Fig. 2

The image is from the on-line news page of NASA, from the article entitled “NASA envisions ‘clean energy’ from algae grown in waste water” (April 22, 2009)

Fig. 3

The image is retrieved from the on-line public source and represents how the OMEGA system is based on NASA’s “life support system”

Similar content being viewed by others

Notes

  1. By referring to algae as ubiquitous, I gesture towards anthropological studies that find trivial things important as an ethnographic object (Fortun 2012). For a slightly different take on the notion of “ubiquitous,” which refers to the simultaneous universality and uniqueness of the microbial life, see Paxson and Helmreich 2013.

  2. For a further information on algal habitats, for example, see Graham et al. 2008; Hollar 2011.

  3. For an introduction to the literature on the “food versus fuel” debate, e.g., see: Chakravorty et al. 2009; Rosegrant and Msangi 2014. The “food versus fuel” discourse has its own politics as well. The critical scholars of agrarian change, for example, note that “the food-versus-fuel land-use discourse inadvertently risks serving the basic interest of nation-states by providing a ‘moral’ argument to engage in new food and biofuel production outside of already neatly demarcated private property on vaguely categorized ‘public lands’ generally assumed to be ‘underutilized’, ‘marginal’ and ‘idle’, despite contrary existing realities” (Borras and Franco 2011, p 48).

  4. Even, biofuels were objected as a “crime against humanity,” in the words of former UN Special Rapporteur John Ziegler (FSC 2010, p 1). Further, the concept of “agrofuel”—instead of “biofuel”—was adopted by the oppositional groups to draw attention to the utilization of agrarian lands and crops for fuel production.

  5. The report was prepared by the economist Donald Mitchell suggested that biofuels from food crops is responsible for the 75% of the total increase in the world food process. For The Guardian article, see Chakrabortty (2008).

  6. This research is part of my dissertation research, which was a multi-sited ethnography of the potentiation of algae as biofuel source in the United States and Turkey (Kasdogan 2017).

  7. As I will detail later in this part of the article, I use the concept “the economization of life” in reference to the historian and STS scholar Murphy’s (2017) work.

  8. For an introduction to this line of discussions, for example, see, “The Special Issue 4—Biofuels, Land, and Agrarian Change,” published by the Journal of Peasant Studies (vol 37, 2010).

  9. For example, for changing definitions of the bioeconomy in policy documents, see: Goven and Pavone (2015). STS scholarship has largely discussed bioeconomies with reference to health sciences and technologies; the case of biofuels has been marginal in these discussions.

  10. The degrowth literature has extensively discussed the way the “economic growth” paradigm became hegemonic by building upon historical and anthropological studies on the economy as well as the post-development studies (Kallis et al. 2018). While this literature puts emphasis on the institutionalization of growth paradigm as a worldview, Murphy’s analysis draws attention to technoscientific practices—e.g., American biologist Raymond Pearl’s experiments with fruit flies in bottles in the 1920 s, and the abstraction of the population growth curve (S-curve) that indicates the growth of fruit flies as a “universal tendency, repeatable for all life, everywhere” (Murphy 2017, p 2). .

  11. For a genealogical approach to the plurality of STS approaches to imaginaries, see: McNeil et al (2017). In this piece, the authors extensively discuss key literatures that have been influential in the implementation of the imaginary concept in STS, namely, Western philosophy; psychoanalysis; late twentieth-century socio-political theory; and, science fiction. As such, this discussion also provides a review of different usages of the concept in social sciences and humanities.

  12. At this point, it should be clear that this article does not center on a critique of technological fixes while developing an analysis of the emergence of algal technologies to revitalize a faith in biofuels. Rather, I am interested in understanding the way technoscientific discourses and practices around algae and algal biofuels embed and constrain sustainability imaginaries.

  13. For example, see the definition of “sustainable growth,” in The McGraw-Hill Dictionary of Modern Economy. Also, for ecological texts, see, Rachel Carson’s Silent Spring (1962) and Meadows et al.’s The Limits to Growth (1972). Yet, these works do not by themselves “account for the emergence of the ‘sustainable development’ discourse associated with the Brundtland Commission” (McManus 1996, p 49).

  14. The emphasis on sustainability as a boundary object that is plastic enough also gestures towards the literature that acknowledges the strength of this malleable concept by noting that “it has the potential to create bridges among very different people” (Mansfield 2016, p 39).

  15. STS scholars have extensively contributed to the understandings of the relationships between “humans and nonhumans” with different analytics, concepts, theories, methods, and methodologies. A summary of this literature goes beyond the scope of this article; for works that focus on multispecies relationships, for example, see: Haraway (2008); Helmreich (2009); and, Tsing (2012).

  16. Plants, algae, and cyanobacteria all contain chlorophyll molecules, which are identified in six different forms (a, b, c, d, e, and f) and differentiated according to the absorption of different wavelengths. Chlorophyll a exists in all photosynthetic cells and converts solar energy into chemical energy, while other forms of chlorophyll molecules work as accessories and transfer energy to chlorophyll a. Different chlorophyll molecules are called colour pigments, since they reflect different wavelengths to appear as different colours in sunlight (Campbell et al. 2009).

  17. The term cyanobacteria itself emerged in the 1970 s when controversies over the classification of blue-green algae (now, cyanobacteria) ended up with the suggestion that this organisms “really resembles in overall features, the genetic map of Escherichia coli [a form of bacteria]” (Margulis 1977, p 83). I interpret the inclusion of cyanobacteria in the definition of algal biofuels —regardless of the debates over its place in bacteria or algae groups— as a strategy to popularize, and thus, potentiate a form of biofuels produced via organisms that are different than plant crops. .

  18. I draw attention to this distinction in order to highlight the problems of taxonomic orderings, while attempting to avoid the same trap of reproducing blanket categories. For the sake of writing convention, however, I speak of these categories in the shorthand of “algae.”.

  19. “The oil we currently exploit comes from Cretaceous deposits of marine algae”—and, “[a]s we use up the oil deposits provided by ancient algae, we are turning the modern algae for help” (Chapman 2013, p 12).

  20. The atmosphere is “the air envelope that surrounds the Earth”; the hydrosphere “includes all the Earth’s water that is found in streams, lakes, seas, soil, groundwater, and air); the lithosphere is the “solid inorganic portion of the Earth, including the soil, sediments, and rock that form the crust and upper mantle”; and, the biosphere refers to “all the living organisms, plants, and animals” (Barsanti and Gualtieri 2005, p 159).

  21. “In total, 99.9% of the biomass [algal bodies] is account for by [these] six major elements…The remaining elements [calcium (Ca), potassium (K), sodium (Na), chlorine (CI), magnesium (Mg), iron (Fe), and silicon (Si)] occur chiefly as trace elements, because they are needed only in catalytic quantities” (emphasis is mine, Barsanti and Gualtieri 2005, p 160).

  22. The US Department of Energy’s Office of Fuels Development funded the ASP. The DOE funded the program through the Solar Energy Institute (SERI) in Golden, CO—which became the National Renewable Energy Laboratory (NREL) in 1991. SERI was a “first-of-its kind federal laboratory dedicated to the development of solar energy. The formation of this lab came in response to the energy crises of the early and mid 1970 s…Among its various programs established to develop all forms of solar energy, DOE initiated research on the use of plant life as a source of transportation fuels.” (Sheehan et al. 1998, p 1). Today, the Office of Fuels Development is known as the Bioenergy Technologies Office under the Office of Energy Efficiency and Renewable Energy.

  23. In the first phase of the ASP, researchers collected algae from “sites in the west, the northwest, and the southeastern regions of the continental US, as well as Hawaii” (Sheehan et al. 1998, p 11). The second phase of the program focused on the biochemical and physiological studies of collected algae on the basis of their lipid production. Lastly, researchers employed techniques of molecular biology and genetic engineering to increase the productivity of algal lipid production.

  24. The RFS mandate limited the amount of corn-based bioethanol that could be blended with conventional transportation fuels to 15 billion gallons by the year 2022 out of a total of 36 billion gallons of renewable fuels (DOE 2016, p 1).

  25. The legislative environment that regulates and supports algal biofuels is not limited to the US DOE’s jurisdiction. For a further information about the policy environment related to algal biofuels, for example, see Trentacoste et al. 2015.

  26. The project “Offshore Membrane of Enclosures for Growing Algae” (OMEGA) was led in between 2009–2012 as part of the NASA Ames Research Center. This project began as a biofuels project but later evolved into an algal biofuels projection integrated with water recycling, solar energy production, and compatible aquaculture, among other components (https://www.bfi.org/ideaindex/projects/2015/omega-global-initiative). In 2015, the project leader Jonathan Trent launched the non-profit OMEGA Global Initiative to promote the OMEGA vision in coastal regions. Further, in recent years, the project also appears to have a new title while the abbreviation is kept—namely, “Operational Marinas for Economic Growth and Abundance.” It is noticeable that growth (economic growth linked to algal growth) stands at the core of this project.

  27. Trent (2015, October). Jonathan Trent—Evolution in our environment from A to Ω [video file].

  28. The articulation of these problems as interrelated also speaks to what some are calling the “popularization of ‘nexus thinking’ in policy and academic discourses” (Williams et al. 2014, p 4).

  29. Trent, while claiming that the OMEGA system provides solutions to all these problems in an environmentally friendly and sustainable way, underlined how this system contributes to “green economies,” what he sees as the “revolutionary tool” of present times. The concept of a “green economy,” institutionalized in/through the United Nations Conference on Sustainable Development (Rio + 20, 2012), has been subject to wide critical scrutiny for how it valorizes and monetizes nature conceived as “natural capital”; as if nature were a service-provider for human well-being (e.g., Jessop 2006; Shear 2010; Escobar 2011; Kenis and Lievens 2015). What I want to underline here is how ideas and practices around green economies are spreading in a way that legitimizes projects such as the OMEGA system.

  30. STS perspective especially becomes important for studying projects that have yet to be realized at least to an extent that let social scientists to assess their socio-environmental impacts. The analyses of not-yet-realized projects are not a speculative endeavour to assess any potential impacts. Instead, the focus on thought experiments or technoscientific practices at the laboratory and pilot scales is informative in understanding what these projects do to the world. Stated differently, experiments are not mere scientific processes but are world making practices. .

  31. As the full name of OMEGA (Offshore Membrane of Enclosures for Growing Algae) already connotes, the political economics of this project constitutes a new form of enclosure extended from land to the oceans. Such an imaginary of enclosure not only limits the use value of oceans to specific power groups, but also establishes a (new) instrumental relation with nature (cf. Heidegger 1977). .

  32. For example, see the report on the blue economy, published by the World Bank and United Nations Department of Economic and Social Affairs (2017).

  33. Open ponds are inexpensive infrastructures to produce algal biomass. Yet, the problems of contamination and evaporation, as well as the lower yield associated with these ponds encourage algal researchers to work with PBRs.

  34. By balancing osmotic pressures against hydrostatic pressure, the OMEGA PBRs benefit from the salinity difference between wastewater and seawater with the help of a selective semi-permeable membrane. For further technical details, see OMEGA-So (2015) .

  35. Social scientists, including anthropologists, sociologists, and geographers, have discussed not only what waste is, but also what multiple discourses and practices around waste in different societies teach us about people, cultures, economies, politics, and environments. I discern two main schools of thought in the literature on waste within the scope of my research. The first can be traced to anthropologist Mary Douglas’s Purity and Danger ([1966] 2002). Douglas examined cross-cultural and temporal meanings of “pollution.” Studies following Douglas’s structural and symbolic account have explored waste as a “matter out of place,” as well as a “mirror of culture” (Reno 2014). By the 2000 s, similar social constructivist approaches had been challenged extensively, and waste has become the topic of materiality studies (e.g., Gille 2010; Reno 2015).

  36. As many discard studies scholars remind us, the pollution question is not only about capitalism but is also largely linked to colonialism. For a discussion on “pollution as colonialism,” see: Liboiron (2017).

  37. Trent (2014, February). Franchise for humanity: Jonathan Trent on sustainable energy for spaceship earth [video file].

References

Download references

Acknowledgements

The author would like to thank the Scientific and Technological Research Council of Turkey for providing funding for a part of this research (Grant number 115C040). The views in this publication are those of the author and are not attributable to this organization. The debates and reflections on which this article is based form part of the author's dissertation, and the author greatly benefited from the valuable input of Natasha Myers, Michelle Murphy, Edward Jones-Imhotep, Stefan Helmreich, Jessica Caporusso and Andrew Schuldt. The author would also like to thank the editors of this special issue and the two anonymous referees.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duygu Kaşdoğan.

Additional information

Handled by Maria Hadjimichael, University of Cyprus, Cyprus.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaşdoğan, D. Designing sustainability in blues: the limits of technospatial growth imaginaries. Sustain Sci 15, 145–160 (2020). https://doi.org/10.1007/s11625-019-00766-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11625-019-00766-w

Keywords

Navigation