Skip to main content

Development of land-use scenarios using vegetation inventories in Japan

Abstract

Changes in land use and land cover (LULC) have major effects on biodiversity and ecosystem services. Land change models can simulate future trends of ecosystem services under different scenarios to inform the actions of decision makers towards building a more sustainable society. LULC data are essential inputs for predicting future land changes. It is now possible to derive high-resolution LULC maps from satellite data using remote sensing techniques. However, the classification of land categories in these maps is too limited to sufficiently assess biodiversity and ecosystem services. This study aims to develop land-use scenarios, using an appropriate LULC map, to enable assessment of biodiversity and ecosystem services at the national scale. First, we developed an LULC dataset using vegetation inventories based on field records of vegetation collected throughout the country in the periods 1978–1987, 1988–1998 and 1999–2014. The vegetation maps consist of over 905 vegetation categories, from which we aggregated the most prevalent categories into 9 LULC categories. Second, we created a business-as-usual scenario and plausible future scenarios on the land use change maps using the Land Change Model tool. In the process of developing the model, we considered key drivers including biophysical and socio-economic factors. The results showed some key land changes as consequences of intensive/extensive land-use interventions. These derived scenario maps can be used to assess the impacts of future land change on biodiversity and ecosystem services.

This is a preview of subscription content, access via your institution.

Fig. 1

Derived from LUC map in 1998

Fig. 2
Fig. 3
Fig. 4

References

  1. Akasaka M, Takenaka A, Ishihama F, Kadoya T, Ogawa M, Osawa T, Yamakita T, Tagane S, Ishii R, Nagai S, Taki H, Akasaka T, Oguma H, Suzuki T, Yamano H (2014) Development of a national land-use/cover dataset to estimate biodiversity and ecosystem services. In: Nakano S, Yahara T, Nakashizuka T (eds) The biodiversity observation network in the Asia-Pacific region: integrative observations and assessments of Asian biodiversity. Springer, Berlin

    Google Scholar 

  2. Atkinson PM, Tatnall AL (1997) Introduction to neural networks in remote sensing. Int J Remote Sens 18(4):699–709

    Article  Google Scholar 

  3. Brown DG, Verburg PH, Pontius RG, Lange MD (2013) Opportunities to improve impact, integration, and evaluation of land change models. Curr Opin Environ Sustain 5:452–457. https://doi.org/10.1016/j.cosust.2013.07.012

    Article  Google Scholar 

  4. Burnham BO (1973) Markov intertemporal land use simulation model. South J Agric Econ 5(1):253–258

    Article  Google Scholar 

  5. Eastman JR (2016) TerrSet tutorial: geospatial monitoring and modeling system. Clark Labs, Clark University, Worcester

    Google Scholar 

  6. Estoque RC, Murayama Y (2012) Examining the potential impact of land use/cover changes on the ecosystem services of Baguio city, the Philippines: a scenario-based analysis. Appl Geogr 35:316–326. https://doi.org/10.1016/j.apgeog.2012.08.006

    Article  Google Scholar 

  7. Foley JA, Defries R, Asner GP, Barford C, Bonan G, Carpenter SR, Chapin FS, Coe MT, Daily GC, Gibbs HK, Helkowski JH, Holloway T, Howard EA, Kucharik CJ, Monfreda C, Patz JA, Prentice IC, Ramankutty N, Snyder PK (2005) Global consequences of land use. Science 309:570–574. https://doi.org/10.1126/science.1111772

    Article  CAS  Google Scholar 

  8. Hashimoto S, DasGupta R, Kabaya K, Matsui T, Haga C, Saito O, Takeuchi K (2018) Scenario analysis of land-use and ecosystem services in the Noto Peninsula, Japan: implications of alternative development pathways under declining population. Sustain Sci

  9. Himiyama Y (1998) Land use/cover change in Japan: from the past to the future. Hydrol Process 12:1995–2001

    Article  Google Scholar 

  10. IPBES (2016) Scenarios and models of biodiversity and ecosystem services: the methodological assessment report on scenarios and models of biodiversity and ecosystem services. IPBES, UN Campus, Bonn

    Google Scholar 

  11. Lawler JJ, Lewis DJ, Nelson E, Plantinga AJ, Polasky S, Withey JC, Helmers DP, Martinuzzi S, Pennington D, Radeloff VC (2014) Projected land-use change impacts on ecosystem services in the United States. Proc Natl Acad Sci 111(20):7492–7497. https://doi.org/10.1073/pnas.1405557111

    Article  CAS  Google Scholar 

  12. Lehsten V, Sykes MT, Scott AV, Tzanopoulos J, Kallimanis A, Mazaris A, Verburg PH, Schulp CJE, Potts SG, Vogiatzakis I (2015) Disentangling the effects of land-use change, climate and CO2 on projected future European habitat types: disentangling the drivers of habitat change. Glob Ecol Biogeogr 24(6):653–663

    Article  Google Scholar 

  13. Matsui T, Ugata T, Machimura T (2014) A development of factor analyzing and predicting model of abandoned agricultural land with machine learning algorisms. J Jpn Soc Civ Eng G 70(6):131–139 (In Japanese with English abstract)

    Google Scholar 

  14. Matsui T, Haga C, Saito O, Hashimoto S (2018) Spatially explicit population distribution scenarios for projecting and assessing natural capital and ecosystem services in Japan. Sustain Sci. https://doi.org/10.1007/s11625-018-0605-y

    Article  Google Scholar 

  15. Ministry of Agriculture, Forestry and Fisheries (2016) National forest and forestry plan. Ministry of Agriculture, Forestry, and Fisheries (MAFF), Government of Japan, Tokyo

    Google Scholar 

  16. Ministry of Land, Infrastructure Transport and Tourism (2015) National Spatial Strategy. Ministry of Land, Infrastructure Transport and Tourism, Government of Japan, pp 1–29

  17. Ministry of the Environment of Japan (2015) Japan Biodiversity Outlook 2: result of comprehensive assessment of biodiversity and ecosystem services in Japan. Ministry of the Environment, Government of Japan, Tokyo

    Google Scholar 

  18. National Institute of Population and Social Security Research, Japan (2017) Population projections for Japan: 2016–2065. Population research series no. 336

  19. Nelson E, Mendoza G, Regetz J, Polasky S, Tallis H, Cameron DR, Chan KM, Daily GC, Goldstein J, Kareiva PM, Lonsdorf E, Naidoo R, Ricketts TH, Shaw MR (2009) Modeling multiple ecosystem services, biodiversity conservation, commodity production, and tradeoffs at landscape scales. Front Ecol Environ 7(1):4–11. https://doi.org/10.1890/080023

    Article  Google Scholar 

  20. Ogawa M, Takenaka A, Kadoya T, Ishihama F, Yamano H, Akasaka M (2013) Land-use classification and mapping at a whole scale of Japan based on a national vegetation map. Jpn J Conserv Ecol 18:69–76 (In Japanese with English abstract)

    Google Scholar 

  21. Ornetsmüller C, Verburg PH, Heinimann A (2016) Scenarios of land system change in the Lao PDR: transitions in response to alternative demands on goods and services provided by the land. Appl Geogr 75:1–11. https://doi.org/10.1016/j.apgeog.2016.07.010

    Article  Google Scholar 

  22. Pistocchi A, Luzi L, Napolitano P (2002) The use of predictive modeling techniques for optimal exploitation of spatial databases: a case study in landslide hazard mapping with expert system-like methods. Environ Geol 41:765–775. https://doi.org/10.1007/s002540100440

    Article  Google Scholar 

  23. Saito O, Kamiyama C, Hashimoto S, Matsui T, Shoyama K, Kabaya K, Uetake T, Taki H, Ishikawa Y, Matsushita K, Yamane F, Hori J, Ariga T, Takeuchi K (2018) Co-design of national scale future scenarios in Japan to predict and assess natural capital and ecosystem services. Sustain Sci. https://doi.org/10.1007/s11625-018-0587-9

    Article  Google Scholar 

  24. Schulp CJE, Nabuurs GJ, Verburg PH (2008) Future carbon sequestration in Europe—effects of land use change. Agric Ecosyst Environ 127(3–4):251–264. https://doi.org/10.1016/j.agee.2008.04.010

    Article  CAS  Google Scholar 

  25. Shoyama K, Kamiyama C, Morimoto J, Ooba M, Okuro T (2017) A review of modeling approaches for ecosystem services assessment in the Asian region. Ecosyst Serv 26:316–328. https://doi.org/10.1016/j.ecoser.2017.03.013

    Article  Google Scholar 

  26. Statistics Bureau Ministry of Internal Affairs and Communications Japan (2016) Statistical handbook of Japan 2016. Statistics Bureau, Ministry of Internal Affairs and Communications, Japan

    Google Scholar 

  27. Takeuchi K, Brown RD, Washitani I, Tsunekawa A, Yokohari M (eds) (2006) Satoyama: the traditional rural landscape of Japan. Springer, Tokyo. https://doi.org/10.1007/978-4-431-67861-8

    Book  Google Scholar 

  28. Thapa RB, Murayama Y (2012) Scenario based urban growth allocation in Kathmandu Valley, Nepal. Landsc Urban Plan 105:140–148. https://doi.org/10.1016/j.landurbplan.2011.12.007

    Article  Google Scholar 

  29. Turner BL, Lambin EF, Reenberg A (2007) The emergence of land change science for global environmental change and sustainability. Proc Natl Acad Sci USA 104(52):20666–20671. https://doi.org/10.1017/CBO9781107415324.004

    Article  CAS  Google Scholar 

  30. United Nations (2017) World population prospects: the 2017 revision—key findings and advance tables. Department of Economic and Social Affairs, Population Division, United Nations, New York. https://doi.org/10.1017/cbo9781107415324.004

    Book  Google Scholar 

  31. Verburg PH, Eickhout B, Meijl H (2008) A multi-scale, multi-model approach for analyzing the future dynamics of European land use. Ann Reg Sci 42(1):57–77. https://doi.org/10.1007/s00168-007-0136-4

    Article  Google Scholar 

  32. Yang W, Li F, Wang R, Hu D (2011) Ecological benefits assessment and spatial modeling of urban ecosystem for controlling urban sprawl in Eastern Beijing, China. Ecol Complex 8:153–160. https://doi.org/10.1016/j.ecocom.2011.01.004

    Article  Google Scholar 

  33. Zhao S, Peng C, Jiang H, Tian D, Lei XD, Zhou XL (2006) Land use change in Asia and the ecological consequences. Ecol Res 21:890–896. https://doi.org/10.1007/s11284-006-0048-2

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by the Environment Research and Technology Development Fund (S-15 “Predicting and Assessing Natural Capital and Ecosystem Services” (PANCES), Ministry of the Environment, Japan). We also thank for helpful comments of anonymous reviewers and members of “Assessing land use functions for sustainable land management in Asia countries (CRRP2016-04MY-Zhen)” funded by Asia-Pacific Network for Global Change Research.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kikuko Shoyama.

Additional information

Handled by Rajarshi DasGupta, The University of Tokyo, Japan.

Appendices: Transition matrices

Appendices: Transition matrices

1987–1998

  Probability of changing to:
Given: LUC 1 LUC 2 LUC 3 LUC 4 LUC 5 LUC 6 LUC 7 LUC 8 LUC 9
1 0.987 0.000 0.004 0.003 0.001 0.000 0.000 0.000 0.004
2 0.040 0.940 0.005 0.001 0.002 0.000 0.005 0.004 0.003
3 0.033 0.008 0.919 0.003 0.002 0.001 0.012 0.014 0.007
4 0.024 0.005 0.007 0.946 0.002 0.001 0.005 0.006 0.004
5 0.042 0.010 0.022 0.021 0.726 0.013 0.054 0.087 0.025
6 0.003 0.001 0.007 0.006 0.019 0.910 0.007 0.043 0.005
7 0.025 0.013 0.007 0.005 0.016 0.003 0.822 0.090 0.020
8 0.013 0.005 0.009 0.005 0.010 0.006 0.016 0.926 0.012
9 0.030 0.001 0.004 0.001 0.001 0.000 0.004 0.010 0.949

BaU

  Probability of changing to:
Given: LUC 1 LUC 2 LUC 3 LUC 4 LUC 5 LUC 6 LUC 7 LUC 8 LUC 9
1 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 0.000 0.870 0.000 0.000 0.130 0.000 0.000 0.000 0.000
3 0.000 0.000 0.869 0.000 0.131 0.000 0.000 0.000 0.000
4 0.000 0.000 0.000 0.868 0.132 0.000 0.000 0.000 0.000
5 0.000 0.000 0.000 0.000 0.723 0.000 0.000 0.277 0.000
6 0.000 0.000 0.000 0.000 0.000 0.999 0.000 0.001 0.000
7 0.000 0.000 0.000 0.000 0.000 0.000 0.896 0.104 0.000
8 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000
9 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000

NC

  Probability of changing to:
Given: LUC 1 LUC 2 LUC 3 LUC 4 LUC 5 LUC 6 LUC 7 LUC 8 LUC 9
1 0.862 0.000 0.000 0.000 0.138 0.000 0.000 0.000 0.000
2 0.000 0.917 0.000 0.000 0.083 0.000 0.000 0.000 0.000
3 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000
4 0.000 0.000 0.000 0.972 0.028 0.000 0.000 0.000 0.000
5 0.000 0.000 0.078 0.000 0.779 0.000 0.128 0.016 0.000
6 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000
7 0.000 0.000 0.000 0.000 0.000 0.013 0.987 0.000 0.000
8 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000
9 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000

ND

  Probability of changing to:
Given: LUC 1 LUC 2 LUC 3 LUC 4 LUC 5 LUC 6 LUC 7 LUC 8 LUC 9
1 0.925 0.000 0.000 0.000 0.075 0.000 0.000 0.000 0.000
2 0.000 0.958 0.000 0.000 0.042 0.000 0.000 0.000 0.000
3 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000
4 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000
5 0.000 0.000 0.159 0.024 0.218 0.000 0.128 0.471 0.000
6 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000
7 0.000 0.000 0.000 0.000 0.000 0.013 0.987 0.000 0.000
8 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000
9 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000

PC

  Probability of changing to:
Given: LUC 1 LUC 2 LUC 3 LUC 4 LUC 5 LUC 6 LUC 7 LUC 8 LUC 9
1 0.932 0.000 0.000 0.000 0.068 0.000 0.000 0.000 0.000
2 0.000 0.757 0.000 0.000 0.243 0.000 0.000 0.000 0.000
3 0.000 0.000 0.864 0.000 0.136 0.000 0.000 0.000 0.000
4 0.000 0.000 0.000 0.803 0.197 0.000 0.000 0.000 0.000
5 0.000 0.000 0.000 0.000 0.264 0.000 0.736 0.000 0.000
6 0.000 0.000 0.000 0.000 0.000 0.999 0.001 0.000 0.000
7 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000
8 0.000 0.000 0.000 0.000 0.000 0.000 0.172 0.828 0.000
9 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000

PD

  Probability of changing to:
Given: LUC 1 LUC 2 LUC 3 LUC 4 LUC 5 LUC 6 LUC 7 LUC 8 LUC 9
1 0.964 0.000 0.000 0.000 0.036 0.000 0.000 0.000 0.000
2 0.000 0.820 0.000 0.000 0.000 0.000 0.180 0.000 0.000
3 0.000 0.000 0.935 0.000 0.065 0.000 0.000 0.000 0.000
4 0.000 0.000 0.000 0.870 0.130 0.000 0.000 0.000 0.000
5 0.000 0.000 0.000 0.000 0.325 0.000 0.675 0.000 0.000
6 0.000 0.000 0.000 0.000 0.000 0.999 0.001 0.000 0.000
7 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000
8 0.000 0.000 0.000 0.000 0.000 0.000 0.104 0.896 0.000
9 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shoyama, K., Matsui, T., Hashimoto, S. et al. Development of land-use scenarios using vegetation inventories in Japan. Sustain Sci 14, 39–52 (2019). https://doi.org/10.1007/s11625-018-0617-7

Download citation

Keywords

  • Land-use scenarios
  • Land-use change
  • Vegetation
  • Ecosystem services
  • Socio-ecological systems