Allen JRL (2000) Morphodynamics of Holocene salt marshes: a review sketch from the Atlantic and Southern North Sea coasts of Europe. Quat Sci Rev 19:1155–1231
Article
Google Scholar
Alongi DM (2008) Mangrove forests: resilience, protection from tsunamis, and responses to global climate change. Estuar Coast Shelf Sci 76:1–13
Article
Google Scholar
Alongi DM (2011) Carbon payments for mangrove conservation: ecosystem constraints and uncertainties of sequestration potential. Environ Sci Policy 14:462–470
Article
Google Scholar
Chmura GL, Anisfeld SC, Cahoon DR, Lynch JC (2003) Global carbon sequestration in tidal, saline wetland soils. Glob Biogeochem Cycles 17:1111
Article
CAS
Google Scholar
Clarke LD, Hannon NJ (1967) The mangrove swamp and salt marsh communities of the Sydney district: I. Vegetation, soils and climate. J Ecol 55:753–771
Article
Google Scholar
Coverdale TC, Brisson CP, Young EW, Yin SF, Donnelly JP, Bertness MD (2014) Indirect human impacts reverse centuries of carbon sequestration and salt marsh accretion. PLoS One 9:e93296
Article
CAS
Google Scholar
DECC (2007) Land use: New South Wales. A data set of land use between June 2000 and June 2007 for New South Wales. Department of Environmental and Climate Change, NSW, Sydney
Google Scholar
DeLaune R, White J (2012) Will coastal wetlands continue to sequester carbon in response to an increase in global sea level?: a case study of the rapidly subsiding Mississippi river deltaic plain. Clim Change 110:297–314. https://doi.org/10.1007/s10584-011-0089-6
Article
Google Scholar
Duarte CM, Losada IJ, Hendriks IE, Mazarrasa I, Marba N (2013) The role of coastal plant communities for climate change mitigation and adaptation. Nat Clim Change 3:961–968. https://doi.org/10.1038/nclimate1970. http://www.nature.com/nclimate/journal/v3/n11/abs/nclimate1970.html#supplementary-information
Emerson D, Weiss JV, Megonigal JP (1999) Iron-oxidizing bacteria are associated with ferric hydroxide precipitates (Fe-plaque) on the roots of wetland plants. Appl Environ Microbiol 65:2758–2761
CAS
Google Scholar
Emmer I, von Unger M, Needelman B, Crooks S, Emmett-Mattox S (2015) Coastal blue carbon in practice: a manual for using the VCS methodology for tidal wetland and seagrass restoration VM0033. In: Simpson S (ed). Restore America’s Estuaries and Silvestrum, Arlington
Google Scholar
Giri C et al (2011) Status and distribution of mangrove forests of the world using earth observation satellite data. Glob Ecol Biogeogr 20:154–159. https://doi.org/10.1111/j.1466-8238.2010.00584.x
Article
Google Scholar
Hashimoto TR, Saintilan N, Haberle SG (2006) Mid-holocene development of mangrove communities featuring rhizophoraceae and geomorphic change in the Richmond river estuary, New South Wales, Australia. Geographical Research 44:63–76
Article
Google Scholar
Hiraishi T et al (2014) 2013 supplement to the 2006 IPCC Guidelines for national greenhouse gas inventories: wetlands. Intergovernmental Panel on Climate Change, Geneva
Google Scholar
Howard J, Hoyt S, Isensee K, Pidgeon E, Telszewski M (eds) (2014) Coastal blue carbon: methods for assessing carbon stocks and emissions factors in mangroves, tidal salt marshes, and seagrass meadows. Conservation International, Intergovernmental Oceanographic Commission of UNESCO, International Union for Conservation of Nature, Arlington
Google Scholar
Kauffman JB, Heider C, Norfolk J, Payton F (2014) Carbon stocks of intact mangroves and carbon emissions arising from their conversion in the Dominican Republic. Ecol Appl 24:518–527. https://doi.org/10.1890/13-0640.1
Article
Google Scholar
Kelleway JJ, Saintilan N, Macreadie PI, Ralph PJ (2016a) Sedimentary factors are key predictors of carbon storage in SE Australian saltmarshes. Ecosystems 19:865–880
Article
CAS
Google Scholar
Kelleway JJ, Saintilan N, Macreadie PI, Skilbeck CG, Zawadzki A, Ralph PJ (2016b) Seventy years of continuous encroachment substantially increases ‘blue carbon’capacity as mangroves replace intertidal salt marshes. Glob change Biol 22:1097–1109
Article
Google Scholar
Kelleway JJ et al (2017) Review of the ecosystem service implications of mangrove encroachment into salt marshes. Glob Change Biol 23:3967–3983
Article
Google Scholar
Kennedy H, Alongi DM, Karim A (2014) Coastal wetlands. In: Hiraishi T, Krug T, Tanabe K, Srivastava N, Jamsranjav B, Kujuda M, Troxler T (eds) 2013 supplement to the 2006 IPCC guidelines for national greenhouse gas inventories: wetlands. IPCC, Geneva, p 55
Google Scholar
Kirwan ML, Megonigal JP (2013) Tidal wetland stability in the face of human impacts and sea-level rise. Nature 504:53–60. https://doi.org/10.1038/nature12856
Article
CAS
Google Scholar
Kirwan ML, Mudd SM (2012) Response of salt-marsh carbon accumulation to climate change. Nature 489:550–553
Article
CAS
Google Scholar
Lewis SE, Sloss CR, Murray-Wallace CV, Woodroffe CD, Smithers SG (2013) Post-glacial sea-level changes around the Australian margin: a review. Quat Sci Rev 74:115–138. https://doi.org/10.1016/j.quascirev.2012.09.006
Article
Google Scholar
Lin C, Melville M (2010) Mangrove soil: a potential contamination source to estuarine ecosystems of Australia. Wetlands (Australia) 11:68–75
Article
Google Scholar
Lucas R et al (2014) Contribution of L-band SAR to systematic global mangrove monitoring. Marine Freshw Res 65:589–603. https://doi.org/10.1071/MF13177
Article
Google Scholar
Macreadie PI, Hughes AR, Kimbro DL (2013) Loss of ‘blue carbon’from coastal salt marshes following habitat disturbance. PloS One 8:e69244
Article
CAS
Google Scholar
Macreadie PI et al (2015) Losses and recovery of organic carbon from a seagrass ecosystem following disturbance. Proc R Soc B 282:20151537
Article
CAS
Google Scholar
Macreadie PI et al (2017) Can we manage coastal ecosystems to sequester more blue carbon? Front Ecol Environ 15:206–213
Article
Google Scholar
McLeod E et al (2011) A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Front Ecol Environ 9:552–560. https://doi.org/10.1890/110004
Article
Google Scholar
Megonigal J, Mines M, Visscher P (2005) Linkages to trace gases and aerobic processes. Biogeochemistry 8:350–362
Google Scholar
Nguyen TT, Bonetti J, Rogers K, Woodroffe CD (2016) Indicator-based assessment of climate-change impacts on coasts: a review of concepts, methodological approaches and vulnerability indices. Ocean Coast Manag 123:18–43
Article
Google Scholar
Northam KJ (2016) Influence of entrance regim on vegetation profiles and carbon storage in south-eastern New South Wales ICOLLs. Bachelor of Environemntal Science (Honours), University of Wollongong
Owers CJ, Rogers K, Mazumder D, Woodroffe CD (2016a) Spatial variation in carbon storage: a case study for Currambene Creek, NSW, Australia. J Coast Res 75(SI):1297–1301
Article
Google Scholar
Owers CJ, Rogers K, Woodroffe CD (2016b) Identifying spatial variability and complexity in wetland vegetation using an object-based approach. Int J Remote Sens 37:4296–4316
Article
Google Scholar
Parry MK, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (2007) Appendix 1: Glossary. Contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge
Google Scholar
Pendleton L et al (2012) Estimating global “blue carbon” emissions from conversion and degradation of vegetated coastal ecosystems. PLoS One 7:e43542. https://doi.org/10.1371/journal.pone.0043542
Article
CAS
Google Scholar
Poffenbarger H, Needelman B, Megonigal J (2011) Salinity influence on methane emissions from tidal marshes. Wetlands 31:831–842. https://doi.org/10.1007/s13157-011-0197-0
Article
Google Scholar
Rogers K, Woodroffe CD (2014) Tidal flats and salt marshes. In: Masselink G, Gehrels R (eds) Coastal environments and global change. Wiley, Oxford
Google Scholar
Rogers K, Woodroffe CD (2016) Geomorphology as an indicator of the biophysical vulnerability of estuaries to coastal and flood hazards in a changing climate. J Coast Conserv 20:127–144
Article
Google Scholar
Rogers K, Saintilan N, Copeland C (2012) Modelling wetland surface elevation and its application to forecasting the effects of sea-level rise on estuarine wetlands. Ecol Model 244:148–157
Article
Google Scholar
Rogers K, Knoll E, Copeland C, Walsh S (2016a) Quantifying changes to historic fish habitat extent on north coast NSW floodplains, Australia. Reg Environ Change 16(5):1469–1479. https://doi.org/10.1007/s10113-015-0872-4
Article
Google Scholar
Rogers K et al (2016b) The state of legislation and policy protecting Australia’s mangrove and salt marsh and their ecosystem services. Marine Policy 72:139–155
Article
Google Scholar
Roper T et al (2011) Assessing the condition of estuaries and coastal lake ecosystems in NSW, Monitoring, evaluation and reporting program Technical Report Series, Office of Environment and Heritage. NSW Office of Environment and Heritage, Sydney
Roy PS (1980) Quaternary depositional environments and stratigraphy of the Fullerton Cove region, central New South Wales. Rec Geol Surv NSW 19:189–219
Google Scholar
Roy PS et al (2001) Structure and function of south-east Australian estuaries. estuarine. Coast Shelf Sci 53:351–384
Article
Google Scholar
Saintilan N, Wilton K (2001) Changes in the distribution of mangroves and saltmarshes in Jervis Bay, Australia. Wetlands Ecol Manag 9:409–420
Article
Google Scholar
Saintilan N, Rogers K, Mazumder D, Woodroffe C (2013) Allochthonous and autochthonous contributions to carbon accumulation and carbon store in southeastern Australian coastal wetlands. Estuar Coast Shelf Sci 128:84–92. https://doi.org/10.1016/j.ecss.2013.05.010
Article
CAS
Google Scholar
Sampere TP, Bianchi TS, Wakeham SG, Allison MA (2008) Sources of organic matter in surface sediments of the Louisiana Continental margin: effects of major depositional/transport pathways and Hurricane Ivan. Cont Shelf Res 28:2472–2487
Article
Google Scholar
Serrano O et al (2016) Can mud (silt and clay) concentration be used to predict soil organic carbon content within seagrass ecosystems? Biogeosciences 13:4915–4926. https://doi.org/10.5194/bg-13-4915-2016
Article
CAS
Google Scholar
Sloss CR, Murray-Wallace CV, Jones BG (2007) Holocene sea-level change on the southeast coast of Australia: a review. Holocene 17:999–1014
Article
Google Scholar
Sutton-Grier AE, Moore AK, Wiley PC, Edwards PET (2014) Incorporating ecosystem services into the implementation of existing U.S. natural resource management regulations: Operationalizing carbon sequestration and storage. Marine Policy 43:246–253. https://doi.org/10.1016/j.marpol.2013.06.003
Article
Google Scholar
Troedson A, Hashimoto TR, Jaworska J, Malloch K, Cain L (2004) New south wales coastal quaternary geology. prepared for the comprehensive coastal assessment (DoP) by the NSW Department of Primary Industries. Mineral Resources, Maitland
Google Scholar
White J, DeLaune R, Li C, Bentley S (2009) Sediment methyl and total mercury concentrations along the Georgia and Louisiana inner shelf, USA. Anal Lett 42:1219–1231
Article
CAS
Google Scholar
Woodroffe CD (1990) The impact of sea-level rise on mangrove shorelines. Prog Phys Geogr 14:483–520
Article
Google Scholar
Woodroffe CD, Mulrennan ME, Chappell J (1993) Estuarine infill and coastal progradation, southern van Diemen Gulf, Northern Australia. Sed Geol 83:257–275
Article
Google Scholar
Woodroffe CD, Lovelock CE, Rogers K (2014) Mangrove shorelines. In: Masselink G, Gehrels R (eds) Coastal Environments Glbal Change. Wiley, West Sussex, UK
Google Scholar
Woodroffe CD, Rogers K, McKee KL, Lovelock CE, Mendelssohn IA, Saintilan N (2016) Mangrove sedimentation and response to relative sea-level rise. Annu Rev Marine Sci 8:243–266
Article
CAS
Google Scholar