Advertisement

Sustainability Science

, Volume 11, Issue 4, pp 591–609 | Cite as

A conceptual framework for analyzing deltas as coupled social–ecological systems: an example from the Amazon River Delta

  • Eduardo S. Brondizio
  • Nathan D. Vogt
  • Andressa V. Mansur
  • Edward J. Anthony
  • Sandra Costa
  • Scott Hetrick
Special Feature: Original Article Sustainable Deltas: Livelihoods, Ecosystem Services, and Policy Implications
Part of the following topical collections:
  1. Special Feature: Sustainable Deltas: Livelihoods, Ecosystem Services, and Policy Implications

Abstract

At the nexus of watersheds, land, coastal areas, oceans, and human settlements, river delta regions pose specific challenges to environmental governance and sustainability. Using the Amazon Estuary-Delta region (AD) as our focus, we reflect on the challenges created by the high degree of functional interdependencies shaping social–ecological dynamics of delta regions. The article introduces the initial design of a conceptual framework to analyze delta regions as coupled social–ecological systems (SES). The first part of the framework is used to define a delta SES according to a problem and/or collective action dilemma. Five components can be used to define a delta SES: social–economic systems, governance systems, ecosystems-resource systems, topographic-hydrological systems, and oceanic-climate systems. These components are used in association with six types of telecoupling conditions: socio-demographic, economic, governance, ecological, material, and climatic-hydrological. The second part of the framework presents a strategy for the analysis of collective action problems in delta regions, from sub-delta/local to delta to basin levels. This framework is intended to support both case studies and comparative analysis. The article provides illustrative applications of the framework to the AD. First, we apply the framework to define and characterize the AD as coupled SES. We then utilize the framework to diagnose an example of collective action problem related to the impacts of urban growth, and urban and industrial pollution on small-scale fishing resources. We argue that the functional interdependencies characteristic of delta regions require new approaches to understand, diagnose, and evaluate the current and future impacts of social–ecological changes and potential solutions to the sustainability dilemmas of delta regions.

Keywords

Deltas Social–ecological systems Amazon Telecoupling Governance Sustainability 

Notes

Acknowledgments

We acknowledge the Belmont Forum funding program, in particular support for the project “Catalyzing action towards sustainability of deltaic systems with an integrated modeling framework for risk assessment (BF-DELTAS).” This includes support from the United States National Science Foundation to E. Brondizio (NSF # 1342898), the State of Sao Paulo Research Foundation (FAPESP) to S. M. Costa, and the French Research Agency (ANR) to E. Anthony. We would like to also acknowledge the support of the project “Sociocultural adaptations of Caboclos to extreme tidal events in the Amazon estuary” supported by the International Development Research Centre (IDRC) of Canada (Co-PIs: Oriana Almeida, Nathan Vogt, and Miguel Pinedo-Vasquez). We are grateful for the opportunity to collaborate with and for the support of our BF-Deltas Project colleagues, in particular Efi Foufoula-Georgiou (BF-Deltas lead PI), Zita Sebesvari, Maira S. Brondizio, and to the editors of this special issue on sustainable deltas Sylvia Szabo, Zoe Matthews, and Robert J. Nicholls. We appreciate the constructive comments of the editors and three anonymous reviewers. We acknowledge the support of the Anthropological Center for Training and Research on Global Environmental Change (ACT) and the Center for the Analysis of Social-Ecological Landscapes (CASEL) at Indiana University, where this research was developed.

References

  1. Aligica PD, Boettk PJ (2009) Challenging institutional analysis and development: the Bloomington School. Routledge, New YorkGoogle Scholar
  2. Anthony EJ, Gardel A, Gratiot N (2014) Fluvial sediment supply, mud banks, cheniers and the morphodynamics of the coast of South America between the Amazon and Orinoco river mouths. In: Martini IP, Wanless HR (eds) Sedimentary Coastal Zones from high to low latitudes: similarities and differences. Geological Society, London, pp 533–560Google Scholar
  3. Ashley C, Carney D (1999) Sustainable livelihoods: lessons from early experience. Department for International Development, vol 7, no 1. Russel Press, LondonGoogle Scholar
  4. Ballesteros E, Brondizio ES (2013) Building negotiated agreement: the emergence of community based tourism in Floreana (Galapagos Islands). Hum Organ 72(4):323–335CrossRefGoogle Scholar
  5. Berkes F, Folke C (eds) (1998) Linking sociological and ecological systems: management practices and social mechanisms for building resilience. Cambridge University Press, New YorkGoogle Scholar
  6. Binder CR, Hinkel J, Bots PWG, Pahl-Wostl C (2013) Comparison of frameworks for analyzing social-ecological systems. Ecol Soc 18(4):26. doi: 10.5751/ES-05551-180426 Google Scholar
  7. Boateng I (2010) Spatial planning in coastal regions: facing the impacts of climate change. Report of FIG working group 8.4. Federation of International Surveyor (FIG), CopenhagenGoogle Scholar
  8. Boateng I (2012) GIS assessment of coastal vulnerability to climate change and coastal adaption planning in Vietnam. J Coast Conserv 16:25–36CrossRefGoogle Scholar
  9. Bosma R, Ahmad SS, Paul Z, Aditya A, Visser L (2012) Challenges of a transition to a sustainably managed shrimp culture agro-ecosystem in the Mahakam Delta, East Kalimantan, Indonesia. Welt Ecol Manag 20:89–99. doi: 10.1007/s11273-011-9244-0 CrossRefGoogle Scholar
  10. Brondizio ES (2008) The Amazonian Caboclo and the Acai Palm: forest farmers in the global market. The New York Botanical Garden Press, New York, p 402Google Scholar
  11. Brondizio ES (2011) Forest resources, family networks and the municipal disconnect: examining recurrent underdevelopment in the Amazon Estuary. In: Pinedo-Vasquez M, Ruffino M, Padoch C, Brondizio ES (eds) The Amazonian Várzea: the decade past and the decade ahead. Springer Publishers co-publication with The New York Botanical Garden Press, Dordrecht, pp 207–232CrossRefGoogle Scholar
  12. Brondizio ES, Ostrom E, Young O (2009) Connectivity and the governance of multilevel socio-ecological systems: the role of social capital. Annu Rev Environ Resour 34:253–278CrossRefGoogle Scholar
  13. Brondizio ES, Vogt N, Siqueira A (2013) Forest Resources, City Services: globalization, household networks, and urbanization in the Amazon estuary. In: Morrison K, Hetch S, Padoch C (eds) The social life of forests. The University of Chicago Press, Chicago, pp 348–361Google Scholar
  14. Bucx T, Marchand M, Makaske A, van de Guchte C (2010) Comparative assessment of the vulnerability, and resilience of 10 deltas—synthesis report. Delta Alliance report number 1. Delta Alliance International, Delft-Wageningen, The NetherlandsGoogle Scholar
  15. Burns SJ (1999) The natural step: a compass for environmental management systems. Corp Environ Strategy 6(4):3–15. doi: 10.1016/S1066-7938(00)80049-4 CrossRefGoogle Scholar
  16. Castello L, McGrath DG, Hess LL, Coe MT, Lefebvre PA, Petry P, Macedo MN, Renó VF, Arantes CC (2013) The vulnerability of Amazon freshwater ecosystems. Conserv Lett 6:217–229. doi: 10.1111/conl.12008 CrossRefGoogle Scholar
  17. Cole DH, Epstein G, McGinnis MD Toward a New Institutional Analysis of Social-Ecological Systems (NIASES): combining Elinor Ostrom’s IAD and SES frameworks (2014). Indiana legal studies research paper no. 299; Indiana University, Bloomington School of Public and Environmental Affairs Research paper no. 2490999. http://ssrn.com/abstract=2490999
  18. Costa SM, Brondizio ES (2009) Inter-urban dependency among Amazonian cities: urban growth, infrastructure deficiencies, and socio-demographic networks. REDES, v 14, n 3, pp 211–234, set/dezGoogle Scholar
  19. Costa SM, Brondizio ES (2011) Cities along the floodplains of the Brazilian Amazon, pp 83–100. In: Pinedo-Vasquez M, Ruffino M, Padoch C, Brondizio ES (eds) The Amazonian Várzea: the decade past and the decade ahead. Springer Publishers co-publication with The New York Botanical Garden Press, Dordrecht, pp 207–232Google Scholar
  20. de Groot RS, Wilson MA, Boumans RMJ (2002) A typology for the classification, description and valuation of ecosystem functions, goods and services. Ecol Econ 41:393–408. doi: 10.1016/S0921-8009(02)00089-7 CrossRefGoogle Scholar
  21. Eloy L, Brondizio ES, Pateo R (2014) New perspectives on mobility, urbanisation, and resource management in Amazônia. Bull Latin Am Res (BLAR) 2014:1–16. doi: 10.1111/blar.12267 Google Scholar
  22. Epstein G, Pittman J, Alexander SM, Berdej S, Dyck T, Kreitmair U, Raithwell KJ, Villamayor-Tomas S, Vogt J, Armitage D (2015) Institutional fit and the sustainability of social-ecological systems. Curr Opin Environ Sustain 14:34–40CrossRefGoogle Scholar
  23. Ericson JP, Vörösmarty CJ, Dingman SL, Ward LG, Meybeck M (2006) Effective sea-level rise and deltas: causes of change and human dimension implications. Glob Planet Change 50(1–2):63–82CrossRefGoogle Scholar
  24. Eurostat (1999) Towards environmental pressure indicators for the EU. First Report. Panorama of the European Union, Theme 8, Environment and energy. Office for Official Publications of the European Communities, LuxembourgGoogle Scholar
  25. Foufoula-Georgiou E, Syvitski J, Paola C, Mai T, Kien A, Noble PT, Dubois MD, Vörösmarty C, Kremer HH, Kabat P, van de Guchte C, Brondizio ES, Saito Y (2011) International year of deltas 2012 (IYD-2012) a proposal. EOS Forum. American Geophysical Union. EOS 92(40):4CrossRefGoogle Scholar
  26. GEOAMAZONIA (2009) Environment outlook in Amazonia. United Nations Environmental Program (UNEP), NairobiGoogle Scholar
  27. Geyer WR, Hill PS, Kineke GC (2004) The transport, transformation and dispersal of sediment by buoyant coastal flows. Cont Shelf Res 24:927–949CrossRefGoogle Scholar
  28. Glaser M, Ratter B, Krause G, Welp M (2012) New approaches to the analysis of human-nature relations. In: Glaser M, Ratter B, Krause G, Welp M (eds) Human-nature interactions in the Anthropocene: potentials of social-ecological systems analysis. New York, London, pp 3–12Google Scholar
  29. Goeldi E (1889) Maravilhas da Natureza na Ilha de Marajó. Boletim do Museu Paraense Emilio Goeldi 3:370–399Google Scholar
  30. Gratiot N, Gardel A, Anthony EJ (2007) Trade-wind waves and mud dynamics on the French Guiana coast, South America: input from ERA-40 wave data and field investigations. Mar Geol 236:15–26CrossRefGoogle Scholar
  31. Guyot JL, Jouanneau JM, Soares L, Boaventura GR, Maillet N, Lagane C (2007) Clay mineral composition of river sediments in the Amazon Basin. Catena 71:340–356CrossRefGoogle Scholar
  32. Hinderer M (2012) From gullies to mountain belts: a review of sediment budgets at various scales. Sed Geol 280:21–59CrossRefGoogle Scholar
  33. Instituto Brasileiro de Geografia e Estatística (IBGE) (2010) Brazilian Institute of geography and statistics. Data from demographic census 2010. Census online: http://www.ibge.gov.br
  34. IPCC (2013) Annex III: glossary. In: Planton S, Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: The physical science basis. Contribution of working group i to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  35. Islam MN, Malak MA, Islam MN (2013) Community-based disaster risk and vulnerability models of a coastal municipality in Bangladesh. Nat Hazards 69:2083–2103. doi: 10.1007/s11069-013-0796-6 CrossRefGoogle Scholar
  36. Lázár AN, Clarke D, Adams H, Razzaque Akanda A, Szabo S, Nicholls RJ, Matthews Z, Begum D, Saleh AFM, Abedin MdA, Payo A, Streatfield PK, Hutton C, Mondal MS, Moslehuddin AZMd (2015) Agricultural livelihoods in coastal Bangladesh under climate and environmental change—a model framework. Environ Sci: Process Impacts 17:1018–1031Google Scholar
  37. Lelie HM, Basurto X, Nenadovic M, Sievanen L, Cavanaugh KC, Cota-Nieto JJ, Erisman BE, Finkbeiner E, Hinojosa-Arango G, Moreno-Báez M, Nagavarapu S, Reddy SMW, Sánchez-Rodríguez A, Siegel K, Ulibarria-Valenzuela JJ, Hudson Weaver A, Aburto-Oropeza O, Operationalizing the social-ecological systems framework to assess sustainability PNAS 2015 112(19), 5979–5984; published ahead of print April 27, 2015. doi: 10.1073/pnas.1414640112
  38. Liu J, Hull V, Batistella M, DeFries R, Dietz T, Fu F, Hertel TW, Izaurralde RC, Lambin EF, Li S, Martinelli LA, McConnell WJ, Moran EF, Naylor R, Ouyang Z, Polenske KR, Reenberg A, de Miranda Rocha G, Simmons CS, Verburg PH, Vitousek PM, Zhang F, Zhu C (2013) Framing sustainability in a telecoupled world. Ecol Soc 18(2):26. doi: 10.5751/ES-05873-180226 Google Scholar
  39. Liu J, Mooney H, Hull V, Davis SJ, Gaskell J, Hertel T, Lubchenco J, Seto KC, Gleick P, Kremen C, Li S (2015) Systems integration for global sustainability. Science 347(625):1258832. doi: 10.1126/science.1258832 CrossRefGoogle Scholar
  40. Mansur AV, Brondízio ES, Roy S, Hetrick S, Vogt DN, Newton A (2016) An assessment of urban vulnerability in the Amazon Delta and Estuary: a multi-criterion index of flood exposure, socio-economic conditions and infrastructure. Sustain Sci. doi: 10.1007/s11625-016-0355-7 Google Scholar
  41. Martinez JM, Guyot JL, Filizola N, Sondag F (2009) Increase in sediment discharge of the Amazon River assessed by monitoring network and satellite data. Catena 79:257–264CrossRefGoogle Scholar
  42. Mcginnis MD (2011) An introduction to IAD and the language of the ostrom workshop: a simple guide to a complex framework. Pol Stud J 39(1):169–183. doi: 10.1111/j.1541-0072.2010.00401.x CrossRefGoogle Scholar
  43. Milliman JD, Farnsworth KL (2011) River discharge to the coastal ocean. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  44. Milliman JD, Meade RH (1983) World-wide delivery of river sediment to the oceans. J Geol 91:1–21CrossRefGoogle Scholar
  45. Organization of American States (2005) Integrated and sustainable management of transboundary water resources in the Amazon River Basin. Water Project Series, 8. World wide web access: http://www.oas.org/osde
  46. Ostrom E (1990) Governing the commons: the evolution of institutions for collective action. Cambridge University Press, New YorkCrossRefGoogle Scholar
  47. Ostrom E (2005) Understanding institutional diversity. Princeton University Press, PrincetonGoogle Scholar
  48. Ostrom E (2007) A diagnostic approach for going beyond panaceas. Proc Natl Acad Sci (PNAS). 104(39):15181–15187CrossRefGoogle Scholar
  49. Ostrom E (2009) A general framework for analyzing sustainability of social-ecological systems. Science 325(5939):419–422CrossRefGoogle Scholar
  50. Ostrom E (2011) Background on the institutional analysis and development framework. Pol Stud J 39(1):7–27. doi: 10.1111/j.1541-0072.2010.00394.x CrossRefGoogle Scholar
  51. Padoch C, Brondizio ES, Costa SM, Pinedo-Vasquez MA, Sears RR, Siqueira AD (2008) Urban forest and rural cities: multi-sited households, consumption patterns, and forest resources in Amazonia. Ecol Soc 13(2). http://www.ecologyandsociety.org/vol13/iss2/art2/
  52. Pahl-Wostl C, Holtz G, Kastens B, Knieper C (2010) Analyzing complex water governance regimes: the management and transition framework. Environ Sci Pol 13:571–581. doi: 10.1016/j.envsci.2010.08.006 CrossRefGoogle Scholar
  53. Pinedo-Vasquez M, Barletti JP, del Castillo TD, Coffey K (2001) Post-boom logging in Amazonia. Hum Ecol 29:219–239CrossRefGoogle Scholar
  54. Pinedo-Vasquez M, Ruffino M, Padoch C, Brondizio ES (eds) (2011) The Amazonian Várzea: the decade past and the decade ahead. Springer Scientific Publishers co-publication with The New York Botanical Garden Press, Dordrecht, p 362Google Scholar
  55. Pirrone N, Trombino G, Cinnirella S, Algieri A, Bendoricchio G, Palmeri L (2005) The driver-pressure-state-impact-response (DPSIR) approach for integrated catchment-coastal zone management: preliminary application to the Po catchment-Adriatic Sea coastal zone system. Reg Environ Change 5:111–137CrossRefGoogle Scholar
  56. Poteete A, Janssen M, Ostrom E (2010) Working together: collective action, the commons, and multiple methods in practice. Princeton University Press, PrincetonCrossRefGoogle Scholar
  57. RAISG (2013) Amazonia under pressure, Amazonian network of georeferenced socio-environmental information. Instituto Socioambiental, São PauloGoogle Scholar
  58. Roosevelt AC (1991) Moundbuilders of the Amazon: geophysical archaeology on Marajo Island, Brazil. Academic Press, New York, p 495Google Scholar
  59. Schaan DP (2009) A cultura marajoara. Editora SENAC, Sao Paulo, p 400Google Scholar
  60. Schellnhuber H-J, Crutzen PJ, Clark WC, Hunt J (2005) Earth system analysis for sustainability. Environ: Sci Pol Sustain Dev 47(8):10–25. doi: 10.3200/ENVT.47.8.10-25 CrossRefGoogle Scholar
  61. Scholz RW, Binder CR (2003) The paradigm of human-environment systems. Working paper 37. Natural and social science interface. Swiss Federal Institute of Technology, Zürich, SwitzerlandGoogle Scholar
  62. Scoones I (1998) Sustainable rural livelihoods: a framework for analysis. IDS Working paper 72. Institute of Development Studies, University of Sussex, BrightonGoogle Scholar
  63. Sebesvari Z, Renaud FG, Haas S, Tessler Z, Kloos J, Szabo S, Tejedor A, Kuenzer C (2016) Vulnerability indicators for deltaic social–ecological systems: a review. Sustain Sci 1–16. doi: 10.1007/s11625-016-0366-4
  64. Smith TF, Thomsen DC, Gould S, Schmitt K, Schlege B (2013) Cumulative pressures on sustainable livelihoods: coastal adaptation in the Mekong Delta. Sustainability 5:228–241. doi: 10.3390/su5010228 CrossRefGoogle Scholar
  65. Steward A (2007) Nobody farms here anymore: livelihood diversification in the Amazonian Community of Carvao, a historical perspective. Agric Hum Values 24(1):75–92CrossRefGoogle Scholar
  66. Su S, Pi J, Wan C, Li H, Xiao R, Li B (2015) Categorizing social vulnerability patterns in Chinese coastal cities. Ocean Coast Manag 116:1–8CrossRefGoogle Scholar
  67. Swapan MSH, Gavin M (2011) A desert in the delta: participatory assessment of changing livelihoods induced by commercial shrimp farming in Southwest Bangladesh. Ocean Coast Manage 54:45–54CrossRefGoogle Scholar
  68. Syvitski JPM, Kettner AJ, Overeem I, Hutton EWH, Hannon MT, Brakenridge GR, Day J, Vorosmarty C, Saito Y, Goisan L, Nicholls RJ (2009) Sinking deltas due to human activities. Nat Geosci 2:681–686CrossRefGoogle Scholar
  69. Szabo S, Brondizio ES, Hetrick S, Matthews Z, Renaud F, Sebesvari Z, Nicholls RJ, Costa S, Dearing JA, Foufoula-Georgiou E (2016) Population dynamics, delta vulnerability and environmental change:comparison of the Mekong, Ganges–Brahmaputra and Amazon delta regions. Sustain Sci. doi: 10.1007/s11625-016-0372-6 Google Scholar
  70. Tejedor A, Longjas A, Zaliapin I, Foufoula-Georgiou E (2015a) Delta channel networks: 1. A graph-theoretic approach for studying connectivity and steady state transport on deltaic surfaces. Water Resour Res 51:3998–4018CrossRefGoogle Scholar
  71. Tejedor A, Longjas A, Zaliapin I, Foufoula-Georgiou E (2015b) Delta channel networks: 2. Metrics of topologic and dynamic complexity for delta comparison, physical inference, and vulnerability assessment. Water Resour Res 51:4019–4045CrossRefGoogle Scholar
  72. Tengö M, Brondizio ES, Malmer P, Elmqvist T, Spierenburg M (2014) A multiple evidence base approach to connecting diverse knowledge systems for ecosystem governance. AMBIO. doi: 10.1007/s13280-014-0501-3
  73. Tessler ZD, Vörösmarty CJ, Grossberg M, Gladkova I, Aizenman H, Syvitski JPM, Foufoula-Georgiou E (2015) Profiling risk and sustainability in coastal deltas of the World. Science 349:638–643CrossRefGoogle Scholar
  74. Turner BL, Kasperson RE, Matson P, McCarthy JJ, Corell RW, Christensen L, Eckley N, Kasperson JX, Luers A, Martello ML, Polsky C, Pulsipher A, Schiller A (2003) A framework for vulnerability analysis in sustainability science. Proc Natl Acad Sci 100(14):8074–8079. doi: 10.1073/pnas.1231335100 CrossRefGoogle Scholar
  75. Vogt ND, Pinedo-Vasquez M, Brondizio ES, Almeida O, Rivero S (2015) Forest transitions in Mosaic landscapes: smallholder’s flexibility in land-resource use decisions and livelihood strategies from WWII to the present in the Amazon Estuary. Soc Nat Resour Int J. doi: 10.1080/08941920.2015.1014603 Google Scholar
  76. Vogt ND, Pinedo-Vasquez M, Brondízio ES, Rabelo FG, Fernandes K, Almeida O, Rivero S, Deadman PJ, Dou Y (2016) Local ecological knowledge in incremental adaptation to changing flood patterns in the Amazon Delta. Sustain Sci. doi: 10.1007/s11625-015-0352-2 Google Scholar
  77. Wittmann H, Von Blackenberg F, Maurice L, Guyot JL, Filizola N, Kubik PW (2011) Sediment production and delivery in the Amazon River basin quantified by in situ-produced cosmogenic nuclides and recent river loads. Geol Soc Am Bull 123:934–950CrossRefGoogle Scholar
  78. Young OR (2002) The institutional dimensions of environmental change: fit, interplay, and scale. MIT Press, CambridgeGoogle Scholar
  79. Young O, Berkhout F, Gallopin GC, Janssen MA, Ostrom E, van der Leeuw S (2006) The globalization of socio-ecological systems: an agenda for scientific research. Glob Environ Change 16(2006):304–316CrossRefGoogle Scholar
  80. Yuan Li, Zhenming G, Fan X, Zhang L (2014) Ecosystem based coastal zone management: a comprehensive assessment of coastal ecosystems in the Yangtze Estuary coastal zone. Ocean Coast Manag 95:63–71CrossRefGoogle Scholar

Copyright information

© Springer Japan 2016

Authors and Affiliations

  • Eduardo S. Brondizio
    • 1
    • 2
    • 3
  • Nathan D. Vogt
    • 2
    • 4
    • 5
  • Andressa V. Mansur
    • 2
    • 6
  • Edward J. Anthony
    • 7
  • Sandra Costa
    • 5
  • Scott Hetrick
    • 2
  1. 1.Department of AnthropologyIndiana University BloomingtonBloomingtonUSA
  2. 2.Center for the Analysis of Social-Ecological Landscapes (CASEL)Indiana University BloomingtonBloomingtonUSA
  3. 3.Ostrom Workshop in Political Theory and Policy AnalysisIndiana University BloomingtonBloomingtonUSA
  4. 4.Instituto Nacional de Pesquisas Espaciais (INPE)São José dos CamposBrazil
  5. 5.Universidade do Vale do Paraíba (UNIVAP)São José dos CamposBrazil
  6. 6.Oficina Erasmus MundusUniversidad de CádizCádizSpain
  7. 7.Université Aix-MarseilleMarseilleFrance

Personalised recommendations