Sustainability Science

, Volume 10, Issue 4, pp 653–671 | Cite as

The real type and ideal type of transdisciplinary processes: part II—what constraints and obstacles do we meet in practice?

Special Feature: Review Article The Reality of Transdisciplinary Processes
Part of the following topical collections:
  1. Special Feature: The Reality of Transdisciplinary Processes

Abstract

This paper builds on the theoretical foundation outlined in Part I (‘The real type and ideal type of transdisciplinary processes: part I—theoretical foundations’) which is included in the same special feature. Mode 2 transdisciplinarity processes are characterized as processes that relate or integrate problem-oriented interdisciplinary research with knowledge generated in a multi-stakeholder approach with the objective to develop socially robust orientations, for instance, on sustainable transitioning. In practice, transdisciplinary processes may have different functions (i.e., societal capacity building, consensus building, analytic mediation, and legitimization). Practitioners and scientists may follow different interests. And we may distinguish between different types of knowledge integration (including different perspectives, modes of thoughts or cultures). Thus, the reality of transdisciplinarity processes may become a very complex and ambitious venture whose multiple objectives are difficult to realize in practice. This paper reviews the existing challenges, obstacles, and constraints of transdisciplinary processes. This review refers to 41 mid- and large-scale transdisciplinary studies run by members of the ITdNet at seven universities on sustainable transitions of urban and regional systems, organizations, and policy processes. A comprehensive table can be used as a checklist for identifying and coping with constraints and obstacles of transdisciplinary processes in practice. The discussion identifies the main challenges for the future development of transdisciplinarity’s theory and practice, including linking Mode 1 transdisciplinarity (i.e., the relating of disciplinary causation for which no interdisciplinarity is possible by merging concepts and methods) and Mode 2 transdisciplinarity, which targets sustainable knowledge and action for system transitioning.

Keywords

Transdisciplinarity Knowledge integration Sustainability learning Mode 1 transdisciplinarity Mode 2 transdisciplinarity 

Supplementary material

11625_2015_327_MOESM1_ESM.pdf (189 kb)
Supplementary material 1 (PDF 189 kb)

References

  1. Anonymous Referee #2 (2014) Interactive comment on “Recent revisions of phosphate rock reserves and resources: reassuring or misleading? An in-depth literature review of global estimates of phosphate rock reserves and resources” by J. D. Edixhoven et al. Earth Syst Dyn Discuss 4:C575–C598Google Scholar
  2. Aronsson M (2002) Stadsförbättring Hamnen Malmö. University of Göteborg, Kandidatuppsats i Kulturgeografi, GötheborgGoogle Scholar
  3. Baron RM, Kenny DA (1986) The moderator mediator variable distinction in social psychological-research—conceptual, strategic, and statistical considerations. J Pers Soc Psychol 51(6):1173–1182CrossRefGoogle Scholar
  4. Barondess JA (1996) Medicine against society—lessons from the Third Reich. JAMA 276(20):1657–1661CrossRefGoogle Scholar
  5. Binder CR, Hofer C, Wiek A, Scholz RW (2004) Transition towards improved regional wood flows by integrating material flux analysis and agent analysis: the case of Appenzell Ausserrhoden, Switzerland. Ecol Econ 49(1):1–17CrossRefGoogle Scholar
  6. Binder CR, Absenger-Helmli I, Schilling T (2015) The reality of rransdisciplinarity: a framework-based self-reflection from science and practice leaders. Sustain Sci. doi:10.1007/s11625-015-0328-2 Google Scholar
  7. Bunders JFG, Broerse JEW, Keil F, Pohl C, Scholz RW, Zweekhorst MBM (2010) How can transdisciplinary research contribute to knowledge democracy? In: Knowledge democracy, Springer, Berlin, pp 125–152Google Scholar
  8. Cook PJ (2014) Interactive comment on “Recent revisions of phosphate rock reserves and resources: reassuring or misleading? An in-depth literature review of global estimates of phosphate rock reserves and resources” by J. D. Edixhoven et al. Earth Syst Dyn Discuss 4:C683–C685Google Scholar
  9. Daston L (1992) Objectivity and the escape from perspective. Soc Stud Sci 22(4):597–618CrossRefGoogle Scholar
  10. Edixhoven JD, Gupta J, Savenije HHG (2013) Recent revisions of phosphate rock reserves and resources: reassuring or misleading? An in-depth literature review of global estimates of phosphate rock reserves and resources. Earth Syst Dyn Discuss 4:1005–1034CrossRefGoogle Scholar
  11. Edixhoven JD, Gupta J, Savenije HHG (2014) Recent revisions of phosphate rock reserves and resources: a critique. Earth Syst Dyn 5:491–507CrossRefGoogle Scholar
  12. Eilittä M (2011) The global TraPs project. In: Transdisciplinary processes for sustainable phosphorus management (2010–2015). Multi-stakeholder forum to guide and optimize P use. ETH-NSSI and IFDC, Zurich and Muscle ShoalsGoogle Scholar
  13. Fisher R, Ury W (1981) Getting to yes: negotiating agreement without giving in. Houghton Mifflin, BostonGoogle Scholar
  14. Gibbons M, Nowotny H (2001) The potential of transdisciplinarity. In: Thompson Klein J, Grossenbacher-Mansuy W, Häberli R, Bill A, Scholz RW, Welti M (eds) Transdisciplinarity: Joint problem solving among science, technology, and society. An effective way for managing complexity. Birkhäuser, Basel, pp 67–80CrossRefGoogle Scholar
  15. Guinée JB (2002) Handbook of life cycle assessment: operational guide to the ISO standards. Kluwer, DordrechtGoogle Scholar
  16. Günther S (2004) Sustainable tourism development on La Digue Island, Republic of Seychelles. Transdisciplinary methods for sustainable solutions in a tropical paradise. Unpublished Diploma Thesis, ETH Zurich, ZurichGoogle Scholar
  17. Habermas J (1996) Contributions to a discourse theory of law and democracy (trans: Regh W). MIT Press, CambridgeGoogle Scholar
  18. Hilton J (2014) Interactive comment on “Recent revisions of phosphate rock reserves and resources: reassuring or misleading? An in-depth literature review of global estimates of phosphate rock reserves and resources” by J. D. Edixhoven et al. Earth Syst Dyn Discuss 4:EC686–EC686Google Scholar
  19. Huang DB, Scholz RW, Gujer W, Chitwood DE, Loukopoulos P, Schertenleib R et al (2007) Discrete event simulation for exploring strategies: an urban water management case. Environ Sci Technol 41(3):915–921CrossRefGoogle Scholar
  20. ITdNet (2014) International transdisciplinarity network. Retrieved November 11, 2014Google Scholar
  21. Jahn T, Bergmann M, Keil F (2012) Transdisciplinarity: between mainstreaming and marginalization. Ecol Econ 79:1–10CrossRefGoogle Scholar
  22. Jantsch E (1970) Inter- and transdisciplinary university: a systems approach to education and innovation. Policy Sci 1:403–428CrossRefGoogle Scholar
  23. Jasanoff S (1996) Beyond epistemology: relativism and engagement in the politics of science. Soc Stud Sci 26:393–418CrossRefGoogle Scholar
  24. Junker B, Flüeler T, Stauffacher M, Scholz RW (2008) Description of the safety case for long-term disposal of radioactive waste—the iterative safety analysis approach as utilized in Switzerland (technical paper as part of the project: “Long-term dimension of radioactive waste disposal: the role of the time dimension for risk perception”). ETH Zürich, ZurichGoogle Scholar
  25. Karelaia N, Hogarth RM (2008) Determinants of linear judgment: a meta-analysis of lens model studies. Psychol Bull 134(3):404–426CrossRefGoogle Scholar
  26. Klein JT (2008) Evaluation of interdisciplinary and transdisciplinary research. A literature review. Am J Prev Med 35:S116–S123CrossRefGoogle Scholar
  27. Krementsov NN (2006) Big revolution, little revolution: science and politics in Bolshevik Russia. Social Res 73(4):1173–1204Google Scholar
  28. Kruetli P, Stauffacher M, Pedolin D, Moser C, Scholz RW (2012) The process matters: fairness in repository siting for nuclear waste. Soc Justice Res 25(1):79–101CrossRefGoogle Scholar
  29. Krutli P, Flueler T, Stauffacher M, Wiek A, Scholz RW (2010) Technical safety vs. public involvement? A case study on the unrealized project for the disposal of nuclear waste at Wellenberg (Switzerland). J Integr Environ Sci 7(3):229–244CrossRefGoogle Scholar
  30. Kuznick PJ (1987) Beyond the laboratory: scientists as political activists in 1930s America. University of Chicago Press, ChicagoGoogle Scholar
  31. Lang DJ, Wiek A, Bergmann M, Stauffacher M, Martens P, Moll P et al (2012) Transdisciplinary research in sustainability science: practice, principles, and challenges. Sustain Sci 7:25–43CrossRefGoogle Scholar
  32. Leydesdorff L, Ward J (2005) Science shops: a kaleidoscope of science-society collaborations in Europe. Public Underst Sci 14(4):353–372CrossRefGoogle Scholar
  33. Merton RK (1996) On social structure and science. Edited and with an introduction by Piotr Sztompka. University of Chicago Press, ChicagoGoogle Scholar
  34. Miah J, Griffiths A, McNeill R, Poonaji I, Martin R, Morse S et al (2015) A small scale transdisciplinary process to maximising the energy efficiency of food factories: insights and recommendations from the development of a novel heat integration framework. Sustain Sci. doi:10.1007/s11625-015-0331-7 Google Scholar
  35. Moser C, Stauffacher M, Kruetli P, Scholz RW (2012a) The crucial role of nomothetic and idiographic conceptions of time: interdisciplinary collaboration in nuclear waste management. Risk Anal 32(1):138–154CrossRefGoogle Scholar
  36. Moser C, Stauffacher M, Kruetli P, Scholz RW (2012b) The influence of linear and cyclical temporal representations on risk perception of nuclear waste: an experimental study. J Risk Res 15(5):459–476CrossRefGoogle Scholar
  37. Moser C, Stauffacher M, Smieszek T, Seidl R, Kruetli P, Scholz RW (2013) Psychological factors in discounting negative impacts of nuclear waste. J Environ Psychol 35:121–131CrossRefGoogle Scholar
  38. Nicolescu B (2006) Transdisciplinarity: past, present and future. In: Haverkort B, Reijntjes C (eds) Moving Worldviews—Reshaping sciences, policies and practices for endogenous sustainable development, COMPAS Editions, vol 142–166, pp 142–166Google Scholar
  39. Nicolescu B (2014) From modernity to cosmodernity. State University of New York Press, New YorkGoogle Scholar
  40. Njoroge R, Birech R, Korir M, Mutisya M, Scholz RW (2015) Transdisciplinary processes of developing, applying, and evaluating a method for improving smallholder farmers' access to (phosphorus) fertilizers: The SMAP method. Sustain SciGoogle Scholar
  41. Pohl C, Rist S, Zimmermann A, Fry P, Gurung GS, Schneider F et al (2010) Researchers’ roles in knowledge co-production: experience from sustainability research in Kenya, Switzerland, Bolivia and Nepal. Sci Public Policy 37(4):267–281CrossRefGoogle Scholar
  42. Posch A, Steiner G, Risopoulos F (2005) Die Erzherzog-Johann-Fallstudie: ein inter-und transdisziplinäres Lehr-und Forschungsprojekt der Kulturlandschaftsforschung; (Nachhaltigkeit durch Innovation-Entwicklungspotenzial einer Bergbaufolgelandschaft). Bundesministerium f. Bildung, Wissenschaft und Kultur, WienGoogle Scholar
  43. Preacher JK, Hayes AF (2004) SPSS and SAS procedures for estimating indirect effects in simple mediation models. Behav Res Methods Instrum Comput 36(4):717–731CrossRefGoogle Scholar
  44. Reed MS, Graves A, Dandy N, Posthumus H, Hubacek K, Morris J et al (2009) Who’s in and why? A typology of stakeholder analysis methods for natural resource management. J Environ Manag 90(5):1933–1949CrossRefGoogle Scholar
  45. Schaltegger S, Beckmann M, Hansen EG (2013) Transdisciplinarity in corporate sustainability: mapping the field. Bus Strateg Environ 22(4):219–229CrossRefGoogle Scholar
  46. Schneidewind U, Scheck H (2013) Die Stadt als „Reallabor“ für Systeminnovationen. In: Rückert-John J (ed) Soziale Innovation und Nachhaltigkeit. Perspektiven sozialen Wandels. Springer VS, Wiesbaden, pp 229–248Google Scholar
  47. Scholz RW (2000) Mutual learning as a basic principle of transdisciplinarity. In: Scholz RW, Häberli R, Bill A, Welti W (eds) Transdisciplinarity: Joint problem-solving among science, technology and society. Workbook II: Mutual learning sessions. Haffmans Sachbuch, Zürich, pp 13–17Google Scholar
  48. Scholz RW (2011) Environmental literacy in science and society: from knowledge to decisions. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  49. Scholz RW (2012) Transdisziplinäre Krebsforschung mit den Mayas. Das Macocc Projekt—Body-Mind Komplementaritäten auf der Ebene der Zelle, des Patienten und der therapeutischen Allianz. EANU Spec 7:1–38Google Scholar
  50. Scholz RW (forthcoming). From visual perception to sustainable transition management: Egon Brunswik’s theory of probabilistic functionalismGoogle Scholar
  51. Scholz RW, Marks D (2001) Learning about transdisciplinarity: where are we? Where have we been? Where should we go? In: Klein JT, Grossenbacher-Mansuy W, Häberli R, Bill A, Scholz RW, Welti M (eds) Transdisciplinarity: Joint problem solving among science, technology, and society. Birkhäuser Verlag AG, Basel, pp 236–252CrossRefGoogle Scholar
  52. Scholz RW, Stauffacher M (2007) Managing transition in clusters: area development negotiations as a tool for sustaining traditional industries in a Swiss prealpine region. Environ Plan A 39(10):2518–2539CrossRefGoogle Scholar
  53. Scholz RW, Stauffacher M (2009) From a science for society to a science with society. Psychologische Rundschau 60(4):242–U280CrossRefGoogle Scholar
  54. Scholz RW, Steiner G (2015) The real type and ideal type of transdisciplinary processes: part I—theoretical foundations. Sust Sci. doi:10.1007/s11625-015-0326-4 Google Scholar
  55. Scholz RW, Tietje O (2002) Embedded case study methods: integrating quantitative and qualitative knowledge. Sage, Thousand OaksGoogle Scholar
  56. Scholz RW, Wellmer F-W (2013) Approaching a dynamic view on the availability of mineral resources: what we may learn from the case of phosphorus? Glob Environ Change 23:11–27CrossRefGoogle Scholar
  57. Scholz RW, Wellmer F-W (2014)Comment on: “Recent revisions of phosphate rock reserves and resources: a critique” by Edixhoven et al. (2014)–phosphate reserves and resources: what conceptions and data do stakeholders need for sustainable action? Earth Syst Dyn Discuss 5(5): 1–49Google Scholar
  58. Scholz RW, Bösch S, Koller T, Mieg HA, Stünzi J (eds) (1996) Industrieareal Sulzer-Escher Wyss: Umwelt und Bauen—Wertschöpfung durch Umnutzung (ETH-UNS Fallstudie 1995) [Industrial area Sulzer-Escher Wyss: environment and construction—value added through re-use (ETH-UNS case study 1995)]. vdf, ZurichGoogle Scholar
  59. Scholz RW, Bösch S, Stauffacher M, Oswald J (eds) (2001) Zukunft Schiene Schweiz 1: Ökoeffizientes Handeln der SBB. ETH-UNS Fallstudie 1999 [Future of railway systems 1: ecoefficient acting of the Swiss Railway Company. ETH-UNS Case Study 1999. Rüegger, ZurichGoogle Scholar
  60. Scholz RW, Stauffacher M, Bösch S, Wiek A (eds) (2002) Landschaftsnutzung für die Zukunft: der Fall Appenzell Ausserrhoden (ETH-UNS Fallstudie 2001) [Utilisation of landscape for the future: the case of Appenzell Ausserrhoden (ETH-UNS case study 2001)]. Rüegger und Pabst, ZurichGoogle Scholar
  61. Scholz RW, Stauffacher M, Bösch S, Krütli P (eds) (2003) Appenzell Ausserrhoden Umwelt Wirtschaft Region. ETH-UNS Fallstudie 2002 [environment economy region. ETH-UNS case study 2002]. Rüegger und Pabst, ZurichGoogle Scholar
  62. Scholz RW, Lang DJ, Wiek A, Walter AI, Stauffacher M (2006) Transdisciplinary case studies as a means of sustainability learning: historical framework and theory. Int J Sustain High Educ 7(3):226–251CrossRefGoogle Scholar
  63. Scholz RW, Stauffacher M, Bösch S, Krütli P, Wiek A (eds) (2007) Entscheidungsprozesse Wellenberg - Lagerung radioaktiver Abfälle in der Schweiz (ETH-UNS Fallstudie 2006) [Decision processes Wellenberg—repository of radioactive waste in Switzerland (ETH-UNS case study 2006]. Rüegger, ZurichGoogle Scholar
  64. Scholz RW, Ulrich AE, Eilittä M, Roy AH (2013) Sustainable use of phosphorus: a finite resource. Sci Tot Environ 461:799–803CrossRefGoogle Scholar
  65. Scholz RW, Roy AH, Brand FS, Hellums DT, Ulrich AE (eds) (2014a) Sustainable phosphorus management: a global transdisciplinary roadmap. Springer, BerlinGoogle Scholar
  66. Scholz RW, Roy AH, Hellums DT (2014b) Sustainable phosphorus management. A transdisciplinary challenge. In: Scholz RW, Roy AH, Brand FS, Hellums DT, Ulrich AE (eds) Sustainable phosphorus management. A sustainable roadmap. Springer, Berlin, pp 1–128CrossRefGoogle Scholar
  67. Schori S, Krütli M, Stauffacher M, Flüeler T, Scholz RW (2009) Siting of nuclear waste repositories in Switzerland and Sweden. Stakeholder preferences for the interplay between technical expertise and social input. ETH-NSSI case study 2008. ETH, ZurichGoogle Scholar
  68. Seidl R, Brand F, Stauffacher M, Krütli P, Le QB, Spörri A et al (2013) Science with society in the anthropocene. Ambio 42(1):5–12CrossRefGoogle Scholar
  69. Stauffacher M, Flueeler T, Krueli P, Scholz RW (2008) Analytic and dynamic approach to collaboration: a transdisciplinary case study on sustainable landscape development in a Swiss prealpine region. Syst Pract Action Res 21(6):409–422CrossRefGoogle Scholar
  70. Stephens JC, Hernandez ME, Roman M, Graham AC, Scholz RW (2008) Higher education as a change agent for sustainability in different cultures and contexts. Int J Sustain High Educ 9(3):317–338Google Scholar
  71. Steiner G, Posch A (2006) Higher education for sustainability by means of transdisciplinary case studies: an innovative approach for solving complex, real-world problems. J Clean Prod 14:877–890CrossRefGoogle Scholar
  72. Stirling A (2008) “Opening up” and “Closing down”—power, participation, and pluralism in the social appraisal of technology. Sci Technol Hum Values 33(2):262–294CrossRefGoogle Scholar
  73. Stokols D, Hall KL, Taylor BK, Moser RP (2008) The science of team science—overview of the field and introduction to the supplement. Am J Prev Med 35(2):S77–S89CrossRefGoogle Scholar
  74. Susskind LE, McKearnen S, Thomas-Lamar J (1999) The consensus building handbook: a comprehensive guide to reaching agreement. Sage Publications, Thousand OaksGoogle Scholar
  75. van Breda J, Musango JK, Brent AC (in press) Undertaking individual transdisciplinary PhD research for sustainable development: case studies from South Africa. Int J Sustain High EducGoogle Scholar
  76. Vilsmaier U, Engbers M, Luthardt P, Maas-Deipenbrock R-M, Wunderlich S, Scholz RW (2015) Case based mutual learning sessions: knowledge integration and transfer in transdisciplinary processes. Sustain Sci. doi:10.1007/s11625-015-0335-3 Google Scholar
  77. Walter AI, Helgenberger S, Wiek A, Scholz RW (2007) Measuring societal effects of transdisciplinary research projects: design and application of an evaluation method. Eval Program Plan 30:325–338CrossRefGoogle Scholar
  78. Wickson F, Carew AL, Russell AW (2006) Transdisciplinary research: characteristics, quandaries and quality. Futures 38(9):1046–1059CrossRefGoogle Scholar
  79. Wiek A (2007) Challenges of transdisciplinary research as interactive knowledge generation—experiences from transdisciplinary case study research. Gaia-Ecol Perspect Sci Soc 16(1):52–57Google Scholar
  80. Wiek A, Walter AI (2009) A transdisciplinary approach for formalized integrated planning and decision-making in complex systems. Eur J Oper Res 197(1):360–370CrossRefGoogle Scholar
  81. Zscheischler J, Rogga S (2015) Transdisciplinarity in land use science—a review of concepts, empirical findings and current practices. Futures 65:28–44CrossRefGoogle Scholar

Copyright information

© Springer Japan 2015

Authors and Affiliations

  1. 1.Fraunhofer Institute for Interfacial Engineering and Biotechnology (IGB)StuttgartGermany
  2. 2.Department of PsychologyUniversity of ZurichZurichSwitzerland
  3. 3.Department for Knowledge and Communication ManagementDanube University KremsKremsAustria
  4. 4.Weatherhead Center for International Affairs (WCFIA)Harvard UniversityCambridgeUSA

Personalised recommendations