Sustainability Science

, Volume 10, Issue 4, pp 527–544 | Cite as

The real type and ideal type of transdisciplinary processes: part I—theoretical foundations

Special Feature: Review Article The Reality of Transdisciplinary Processes
Part of the following topical collections:
  1. Special Feature: The Reality of Transdisciplinary Processes

Abstract

Transdisciplinarity integrates or relates different epistemics from science and practice (Mode 2 transdisciplinarity) or from branches of disciplines if interdisciplinary integration is impossible (Mode 1 transdisciplinarity). The paper explains, based on an analysis of the historical development of the Mode 2 transdisciplinarity concept, how transdisciplinary processes link interdisciplinary applied research and multi-stakeholder discourses by facilitating methods. We elaborate on what type of problems may be managed using what knowledge, how this might be accomplished, what types of objectives are desired, and by what organizational means. Thus the paper presents ontology, epistemology, methodology, functionality, and organization of an ideal type of transdisciplinary process. Socially robust orientations are the expected outcomes of this process. These orientations provide science-based, state-of-the-art, socially accepted options of solutions which acknowledge uncertainties and the incompleteness of different forms of epistemics (i.e., of knowing or thought), in particular within the sustainable transitioning of complex real-world problems.

Keywords

Transdisciplinarity Knowledge integration Sustainability learning Mode 1 transdisciplinarity Mode 2 transdisciplinarity 

References

  1. Abbott A (1988) The system of professions. The University of Chicago Press, ChicagoGoogle Scholar
  2. Abbott A (2002) The disciplines and the future. In: Brint S (ed) The future and the city of intellect: the changing American universities. Stanford University Press, Stanford, pp 205–230Google Scholar
  3. Apostel L, Berger G, Briggs A, Michaud G (eds) (1972) Interdisciplinarity: problems of teaching and research in universities. OECD, Centre for Research and Innovation, NiceGoogle Scholar
  4. Atkin A (ed) (2010) Stanford encyclopedia of philosophy. Stanford University, StanfordGoogle Scholar
  5. Bell S, Morse S (2013) Rich pictures: a means to explore the ‘sustainable mind’? Sustain Dev 21(1):30–47Google Scholar
  6. Brunswik E (1952) The conceptual framework of psychology. University of Chicago Press, ChicagoGoogle Scholar
  7. Chadha M (ed) (2010) Stanford encyclopedia of philosophy. Stanford University, StanfordGoogle Scholar
  8. Chomsky N (1975) Reflections on language. Pantheon Books, New YorkGoogle Scholar
  9. Dienel PC (1970/1991). Die Planungszelle. Opladen, Westdeutscher VerlagGoogle Scholar
  10. Dreyfus HL, Dreyfus SE (2005) Peripheral vision: expertise in real world contexts. Organ Stud 26(5):779–792CrossRefGoogle Scholar
  11. Environmental System Sciences (2006) Sustainable urban mobility—case study Graz/Annenstraße (in short: ‘Case study Graz’). University of Graz, GrazGoogle Scholar
  12. European Commission (2012) The European Union explained: Europe 2020: Europe’s growth strategy. Growing to a sustainable and job-rich future. EU, BrusselsGoogle Scholar
  13. Fals Borda O, Rahman MA (1991) Action and knowledge: breaking the monopoly with participatory action-research. Apex Press, New YorkCrossRefGoogle Scholar
  14. Fischbein E (1987) Intuition in science and mathematics. Springer, HeidelbergGoogle Scholar
  15. Fischer KR, Stadler F (eds) (1997) “Wahrnehmung und Gegenstandswelt”: Zum Lebenswerk von Egon Brunswik (1903–1955) [Perception and world of objects: On the lifework of Egon Brunswik (1903–1955)]. Springer, ViennaGoogle Scholar
  16. Forrester JW (2009) Learning through system dynamics as preparation for the 21st century. MIT Sloan School of Management, CambridgeGoogle Scholar
  17. Francis C, Breland TA, Ostergaard E, Lieblein G, Morse S (2013) Phenomenon-based learning in agroecology: a prerequisite for transdisciplinarity and responsible action. Agroecol Sustain Food Syst 37(1):60–75Google Scholar
  18. Friend J, Hickling J (2005) Planning under pressure. The strategic choice approach. Elsevier, AmsterdamGoogle Scholar
  19. Frischknecht PM, Imboden DM (1995) Environmental sciences education at the Swiss Federal Institute of Technology (ETH) Zurich and at other Swiss Universities. Environ Sci Pollut Res 2(1):56–59CrossRefGoogle Scholar
  20. Funtowicz SO, Ravetz JR (1993) Science for the post-normal age. Futures 7(25):735–755Google Scholar
  21. Funtowicz SO, Ravetz J (2003) Post-normal science. In: International Society for Ecological Economics (ed) Online encyclopedia of ecological economicsGoogle Scholar
  22. Gallucci S, Matzinger P (2001) Danger signals: SOS to the immune system. Curr Opin Immunol 13(1):114–119CrossRefGoogle Scholar
  23. Gass JR (1972) Preface. In: Apostel L, Berger G, Briggs A, Michaud G (eds) Interdisciplinarity: problems of teaching and research in universities. University of Nice, Nice, pp 9–10Google Scholar
  24. Geertz C (1966) Religion as a culture. In: Banton M (ed) Anthropological approaches to the study of religion. Routledge, LondonGoogle Scholar
  25. Gentner D (2002) Psychology of mental models. In: Smelser NJ, bates PB (eds) International encyclopedia of the social and behavioral sciences. Elsevier Science, Amsterdam, pp 9683–9687Google Scholar
  26. Giacomo R, Sinigaglia C, Anderson FT (2008) Mirrors in the brain: how our minds share actions and emotions. Oxford University Press, OxfordGoogle Scholar
  27. Gibbons M, Nowotny H (2001) The potential of transdisciplinarity. In: Thompson Klein J, Grossenbacher-Mansuy W, Häberli R, Bill A, Scholz RW, Welti M (eds) Transdisciplinarity: joint problem solving among science, technology, and society. An effective way for managing complexity. Birkhäuser, Basel, pp 67–80Google Scholar
  28. Gibbons M, Limoges C, Nowotny H, Schwartzmann S, Scott P, Trow M (1994) The new production of knowledge. Sage, LondonGoogle Scholar
  29. Goldstein WM (2006) Introduction to Brunswikian theory and method. In: Kirlik A (ed) Adaptive perspectives on human-technology interaction. Methods and models for cognitive engineering and human-computer interaction. Oxford University Press, OxfordGoogle Scholar
  30. Gregory R, Failing L, Harstone M, McDaniels T, Ohlson D (2012) Structured decision making. A practical guide to environmental management choices. Wiley, ChicesterCrossRefGoogle Scholar
  31. Gross M, Hoffmann-Riem H, Krohn W (2003) Real-world experiments: Robustness and dynamics of ecological design projects in a knowledge society. Soziale Welt-Zeitschrift für Sozialwissenschaftliche Forschung und Praxis 54(3):241Google Scholar
  32. Häberli R, Grossenbacher-Mansuy W (1998) Transdisziplinarität zwischen Förderung und Überforderung. Erkenntnisse aus dem SPP Umwelt. GAIA 7:196–213Google Scholar
  33. Häberli R, Scholz RW, Bill A, Welti M (eds) (2000) Transdisciplinarity: joint problem-solving among science, technology and society. Workbook I: dialogue sessions and idea market, Vol 1. Haffmans Sachbuch Verlag, ZürichGoogle Scholar
  34. Häberli R, Bill A, Grossenbacher-Mansuy W, Thompson Klein J, Scholz RW, Welti M (2001) Synthesis. In: Thompson Klein J, Grossenbacher-Mansuy W, Häberli R, Bill A, Scholz RW, Welti M (eds) Transdisciplinarity: joint problem solving among science, technology, and society. An effective way for managing complexity. Basel, Birkhäuser, pp 6–22Google Scholar
  35. Habermas J (1987) The theory of communicative action. In: Lifeworld and system: a critiques of funtionalist reason. vol 2. Beacon, Boston, MAGoogle Scholar
  36. Hammond KR (1954) Representative vs. systematic design in clinical psychology. Psychol Bull 51:150–159CrossRefGoogle Scholar
  37. Hammond KR, Stewart TR (eds) (2001) The essential Brunswik. Oxford University Press, OxfordGoogle Scholar
  38. Hammond KR, Hamm RM, Grassia J, Pearson T (1983) Direct comparison of intuitive, quasi-rational, and analytical cognition. University of Colorado, Institute for Cognitive Science, Center for Research on Judgment and Policy, BoulderGoogle Scholar
  39. Hansmann R, Scholz RW, Crott HW, Mieg HA, Scholz RW (2003) Higher education in environmental sciences: the effects of incorporating expert information in group discussions of a transdisciplinary case study. Electr J Sci Educ 7(3):31Google Scholar
  40. Hansmann R, Crott HW, Mieg HA (2009) Improving group processes in transdisciplinary case studies for sustainability learning. Int J Sustain High Educ 10(1):33–42CrossRefGoogle Scholar
  41. Harris M (1976) History and significance of emic-etic distinction. Annu Rev Anthropol 5:329–350CrossRefGoogle Scholar
  42. Heider F (1930) Die Leistung des Wahrnehmungssystems [The performance of the perception system]. Zeitschrift für Psychol 114:371–394Google Scholar
  43. Hempel C, Oppenheim P (1948) Studies in the logic of explanation. Philos Sci 15:135–175CrossRefGoogle Scholar
  44. Jantsch E (1970) Inter- and transdisciplinary university: a systems approach to education and innovation. Policy Sci 1:403–428CrossRefGoogle Scholar
  45. Jantsch E (1972) Towards interdisciplinarity and transdisciplinarity in education and innovation. In: Apostel L, Berger G, Briggs A, Michaud G (eds) Interdisciplinarity: problems of teaching and research in universities. University of Nice, Nice, pp 97–121Google Scholar
  46. Junker B, Flüeler T, Stauffacher M, Scholz RW (2008) Description of the safety case for long-term disposal of radioactive waste—the iterative safety analysis approach as utilized in Switzerland. ETH Zürich, ZurichGoogle Scholar
  47. Kahneman D (2011) Thinking, fast and slow. Farrar, Straus and Giroux, New YorkGoogle Scholar
  48. Kant I (1770) De mundi sensibilis atque intelligibilis forma et principiis, Kant’s inaugural dissertation of 1770 by Immanuel Kant, translated by WJ Eckoff. In Wikisource (Eds.) http://en.wikisource.org/wiki/Kant’s_Inaugural_Dissertation_of_1770-Paragraph_9
  49. Kemmis S, McTaggert R, Retallick J (2004) The action research planner, 2nd edn. Aga Khan University, Institute for Educational Development, KarachiGoogle Scholar
  50. Kessel F, Rosenfield PL (2008) Toward transdisciplinary research—historical and contemporary perspectives. Am J Prev Med 35(2):S225–S234CrossRefGoogle Scholar
  51. Kirlik A (ed) (2006) Adaptive perspectives on human-technology interaction. Methods and models for cognitive engineering and human-computer interaction. Oxford University Press, OxfordGoogle Scholar
  52. Klein JT, Grossenbacher-Mansuy W, Häberli R, Bill A, Scholz RW, Welti M (eds) (2001) Transdisciplinarity: Joint problem solving among science, technology, and society. An effective way for managing complexity. Birkhäuser, BaselGoogle Scholar
  53. Kolb DA (1984) Experiential learning. Experience as the source of learning and development. Prentice Hall, Upper Saddle RiverGoogle Scholar
  54. Krütli P, Flüeler T, Stauffacher M, Wiek A, Scholz RW (2010) Technical safety vs. public involvement? A case study on the unrealized project for the disposal of nuclear waste at Wellenberg (Switzerland). J Integr Environ Sci 7(3):229–244CrossRefGoogle Scholar
  55. Krütli P, Stauffacher M, Pedolin D, Moser C, Scholz RW (2012) The process matters: fairness in repository siting for nuclear waste. J Justice Res 25:79–101CrossRefGoogle Scholar
  56. Kuhn TS (1996) The structure of scientific revolutions, 3rd edn. Chicago University Press, ChicagoCrossRefGoogle Scholar
  57. Lang DJ, Wiek A, Bergmann M, Stauffacher M, Martens P, Moll P et al (2012) Transdisciplinary research in sustainability science: practice, principles, and challenges. Sustain Sci 7:25–43CrossRefGoogle Scholar
  58. Leung MW, Yen IH, Minkler M (2004) Community based participatory research: a promising approach for increasing epidemiology’s relevance in the 21st century. Int J Epidemiol 33(3):499–506CrossRefGoogle Scholar
  59. Lewin K (1946) Action research and minority problems. J Soc Issues 2(4):34–46CrossRefGoogle Scholar
  60. Leydesdorff L, Etzkowitz H (1996) Emergence of a triple helix of university-industry-government relations. Sci Public Policy 23(5):279–286Google Scholar
  61. Leydesdorff L, Meyer M (2006) Triple helix indicators of knowledge-based innovation systems—introduction to the special issue. Res Policy 35(10):1441–1449CrossRefGoogle Scholar
  62. Lind I (1999) Organizing for interdisciplinarity in Sweden: the case of tema at Linköping University. Policy Sci 32:415–420Google Scholar
  63. Malpass J (ed) (2014) Stanford encyclopedia of philosophy. Stanford University, StanfordGoogle Scholar
  64. Margiolis E, Laurence S (eds) (2011) Stanford encyclopedia of philosophy. Stanford University, StanfordGoogle Scholar
  65. Martens P, Rotmans J (2005) Transitions in a globalising world. Futures 37(10):1133–1144CrossRefGoogle Scholar
  66. Mieg HA (2006) System experts and decision making experts in transdisciplinary projects. Int J Sustain High Educ 7(3):341–351CrossRefGoogle Scholar
  67. Naveh Z (2005) Epilogue: toward a transdisciplinary science of ecological and cultural landscape restoration. Restor Ecol 13:228–234Google Scholar
  68. Nicolescu B (2000) Transdisciplinarity and complexity: levels of reality as source of indeterminacy. Bulletin Interactif du Centre International de Recherches et Études Transdisciplinaire, 2014 (November 29)Google Scholar
  69. Nicolescu B (2002) Manifesto of transdisciplinarity. State University of New York, AlbanyGoogle Scholar
  70. Nicolescu B (2006) Transdisciplinarity: past, present and future. In: Haverkort B, Reijntjes C (eds) Moving worldviews—reshaping sciences, policies and practices for endogenous sustainable development, COMPAS Editions, Holland, pp 142–166Google Scholar
  71. Nicolescu B (2014) From modernity to cosmodernity. State University of New York Press, New YorkGoogle Scholar
  72. Nowotny H (1993) Socially distributed knowledge: five spaces for science to meet the public. Hist Philos Sci 2:307–319Google Scholar
  73. Nowotny H, Scott P, Gibbons M (2001) Rethinking science—knowledge and the public on an age of uncertainty. Polity, LondonGoogle Scholar
  74. OECD (2012) OECD science, technology and industry outlook 2012. OECD Publishing, parisGoogle Scholar
  75. Ostrom E (2009) A general framework for analyzing sustainability of social-ecological systems. Science 325(5939):419–422CrossRefGoogle Scholar
  76. Peirce CS (1991) Peirce on signs: writings on semiotics by Charles Sanders Perice. In: Hopkins J (ed). University of North Carolina Press, Chapel Hill, NCGoogle Scholar
  77. Piaget J (1972) The epistemology of interdisciplinary relationships. In: Apostel L, Berger G, Briggs A, Michaud G (eds) Interdisciplinarity: problems of teaching and research in universities. OECD, Paris, pp 127–139Google Scholar
  78. Pickering A (ed) (1992) Science as practice and culture. University of Chicago Press, ChicagoGoogle Scholar
  79. Polanyi M (1966) The tacit dimension. Doubleday, New YorkGoogle Scholar
  80. Popper K (1935/2005) Logik der Forschung [The logic of scientific discovery]. Mohr Siebeck, TübingenGoogle Scholar
  81. Postman L, Bruner JS, McGinnies E (1948) Personal values as selective factors in perception. J Abnorm Soc Psychol 43(2):143CrossRefGoogle Scholar
  82. Renn O, Webler T, Rakel H, Dienel P, Johnson B (1993) Public participation in decision-making: a 3-step procedure. Policy Sci 26(3):189–214CrossRefGoogle Scholar
  83. Schaltegger S, Beckmann M, Hansen EG (2013) Transdisciplinarity in corporate sustainability: mapping the field. Bus Strategy Environ 22(4):219–229CrossRefGoogle Scholar
  84. Scholz RW (ed) (1983) Decision making under uncertainty. Elsevier, AmsterdamGoogle Scholar
  85. Scholz RW (1987) Cognitive strategies in stochastic thinking. Reidel, DordrechtCrossRefGoogle Scholar
  86. Scholz RW (1995a) Pionierarbeit und neue Perspektive. Vorwort mit kleiner Einleitung. In RW Scholz, T Koller, HA Mieg, C Schmidlin (eds) Perspektive “Grosses Moos”—Wege zu einer nachhaltigen Landwirtschaft. UNS-Fallstudie 1994. Vdf, Zurich, pp 5–7Google Scholar
  87. Scholz RW (1995b) Zur Theorie der Fallstudie. In RW Scholz, T Koller, HA Mieg & C Schmidlin (eds.) Perspektive “Grosses Moos”—Wege zu einer nachhaltigen Landwirtschaft. UNS-Fallstudie 1994. Vdf, Zürich, pp 39–46Google Scholar
  88. Scholz RW (2000) Mutual learning as a basic principle of transdisciplinarity. In: Scholz RW, Häberli R, Bill A, Welti W (eds) Transdisciplinarity: joint problem-solving among science, technology and society. Workbook II: mutual learning sessions. Haffmans Sachbuch, Zürich, pp 13–17Google Scholar
  89. Scholz RW (2011) Environmental literacy in science and society: From knowledge to decisions. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  90. Scholz RW (2012) Transdisziplinäre Krebsforschung mit den Mayas. Das Macocc Projekt—body-mind Komplementaritäten auf der Ebene der Zelle, des Patienten und der therapeutischen Allianz. EANU Spec 7:1–38Google Scholar
  91. Scholz RW, Le QL (2014) A novice’s guide to transdisciplinarity. In: Scholz RW, Roy AH, Brand FS, Hellums DT, Ulrich AE (eds) Sustainable phosphorus management: a global transdisciplinary roadmap. Springer, Berlin, pp 116–118Google Scholar
  92. Scholz RW, Marks D (2001) Learning about transdisciplinarity: where are we? where have we been? where should we go? In: Klein JT, Grossenbacher-Mansuy W, Häberli R, Bill A, Scholz RW, Welti M (eds) Transdisciplinarity: Joint problem solving among science, technology, and society. Birkhäuser Verlag AG, Basel, pp 236–252CrossRefGoogle Scholar
  93. Scholz RW, Tietje O (2002) Embedded case study methods: integrating quantitative and qualitative knowledge. Sage, Thousand OaksGoogle Scholar
  94. Scholz RW, Häberli R, Bill A, Welti M (eds) (2000) Transdisciplinarity: Joint problem-solving among science, technology and society. Workbook II: Mutual learning sessions, vol 2. Haffmans Sachbuch Verlag, ZürichGoogle Scholar
  95. Scholz RW, Mieg HA, Oswald J (2000b) Transdisciplinarity in groundwater management: towards mutual learning of science and society. Water Air Soil Pollut 123(1–4):477–487CrossRefGoogle Scholar
  96. Scholz RW, Lang DJ, Wiek A, Walter AI, Stauffacher M (2006) Transdisciplinary case studies as a means of sustainability learning: historical framework and theory. Int J Sustain High Educ 7(3):226–251CrossRefGoogle Scholar
  97. Scholz RW, Stauffacher M, Bösch S, Krütli P, Wiek A (eds) (2007) Entscheidungsprozesse Wellenberg—Lagerung radioaktiver Abfälle in der Schweiz (ETH-UNS Fallstudie 2006) [Decision processess Wellenberg—Repository of radioactive waste in Switzerland]. Rüegger, ZurichGoogle Scholar
  98. Scholz RW, Blumer YB, Brand FS (2012) Risk, vulnerability, robustness, and resilience from a decision-theoretic perspective. J Risk Res 15(3):313–330CrossRefGoogle Scholar
  99. Scholz RW, Kiyaschenko LP, Bazhanov VA (eds) (2015) Transdisciplinarity in philosophy and science: approaches, problems and prospects. Navigator, MoscowGoogle Scholar
  100. Scholz RW, Yarime M, Shiroyama H (forthcoming) Global leadership for social design: theoretical and educational perspectivesGoogle Scholar
  101. Schori S, Krütli M, Stauffacher M, Flüeler T, Scholz RW (2009) Siting of nuclear waste repositories in Switzerland and Sweden. Stakeholder preferences for the interplay between technical expertise and social input. ETH-NSSI Case Study 2008. ETH, ZurichGoogle Scholar
  102. Scott P (2007) From professor to ‘knowledge worker’: profiles of the academic profession. Minerva 45(2):205–215CrossRefGoogle Scholar
  103. Selten R (1990) Bounded rationality. J Inst Theor Econ 146(4):649–658Google Scholar
  104. Shulman LS, Carey NB (1984) Psychology and the limitations of individual rationality: implications for the study of reasoning and civility. Rev Educ Res 54(4):501–524CrossRefGoogle Scholar
  105. Simon HA (1973) The structure of ill-structured problems. Artif Intell 4:181–201Google Scholar
  106. Simon HA (1982) Models of bounded rationality. MIT Press, CambridgeGoogle Scholar
  107. Slovic P, Malmfors T, Krewski D, Mertz CK, Neil N, Bartlett S (1995) Intuitive toxicology 2. Expert and lay judgments of chemical risks in Canada. Risk Anal 15(6):661–675CrossRefGoogle Scholar
  108. Sneed JD (1971) The logical structure of mathematical physics. Reidel, DordrechtCrossRefGoogle Scholar
  109. Steiner G (2008) Supporting sustainable innovation through stakeholder management: a systems view. Int J Innov Learn 5(6):595–616CrossRefGoogle Scholar
  110. Steiner G (2009) The concept of open creativity: collaborative creative problem solving for innovation generation—a systems approach. J Bus Manag 15(1):5–33Google Scholar
  111. Steiner G (2011) Das Planetenmodell der kollaborativen Kreativität: Systemisch-kreatives Problemlösen für komplexe Herausforderungen. Gabler, WiesbadenGoogle Scholar
  112. Steiner G (2013) Competences for complex real-world problems: toward an integrative framework. Weatherhead Center for International Affairs, Harvard University, BostonGoogle Scholar
  113. Steiner G (2014) Problem discovery as a collaborative, creative, and method-guided search for the “real problems” as raw diamonds of innovation. Working Paper 2014-0003, Weatherhead Center for International Affairs, Harvard University, BostonGoogle Scholar
  114. Stokols D, Fuqua J, Gress J, Harvey R, Phillips K, Baezconde-Garbanati L et al (2003) Evaluating transdisciplinary science. Nicot Tob Res 5(Suppl 1):S21–S39CrossRefGoogle Scholar
  115. Stokols D, Hall KL, Moser RP, Fenk A, Misra S, Taylor BK (2010) Cross-disciplinary team science initiatives: research, training, and translation. In: Frodeman R, Thompson Klein J, Mutcham C, Holbrock JB (eds) Oxford Handbook of Interdisciplinarity. Oxford University Press, Oxford, pp 471–481Google Scholar
  116. Stueber K (ed) (2013) Stanford encyclopedia of philosophy. Stanford University, StanfordGoogle Scholar
  117. Susskind LE, McKearnen S, Thomas-Lamar J (1999) The consensus building handbook: a comprehensive guide to reaching agreement. Sage Publications, Thousand OaksGoogle Scholar
  118. Van Boven L, Thompson L (2003) A look into the mind of the negotiator: mental models in negotiation. Gr Proces Intergr Relat 6(4):387–404CrossRefGoogle Scholar
  119. von Uexküll JJ (1931) Der Organismus und die Umwelt [The organism and the environment]. In: Driesch H, Woltereck H (eds) Das Lebensproblem im Lichte der modernen Forschung [The life problem in the light of modern research]. Verlag Quelle & Meyer, Leipzig, pp 189–224Google Scholar
  120. Walter AI, Helgenberger S, Wiek A, Scholz RW (2007) Measuring societal effects of transdisciplinary research projects: design and application of an evaluation method. Eval Prog Plan 30:325–338CrossRefGoogle Scholar
  121. Watkins JW (1952) Ideal types and historical explanation. Br J Philos Sci 3(9):22–43CrossRefGoogle Scholar
  122. Weber M (1949) The methodology of the social sciences. The Free Press, GlencoeGoogle Scholar
  123. Wellek A (1953) Verstehen, Begreifen, Erklären. Jahrbuch für Psychologie und Psychotherapie 393–409Google Scholar
  124. Werner F (2005) Ambiguities in decision-oriented life cycle analysis. The role of mental models and values. Springer, DordrechtGoogle Scholar
  125. Werner F, Scholz RW (2002) Ambiguities in decision-oriented life cycle inventories—the role of mental models. Int J Life Cycle Assess 7(6):330–338Google Scholar
  126. Wiek A, Walter AI (2009) A transdisciplinary approach for formalized integrated planning and decision-making in complex systems. Eur J Oper Res 197(1):360–370CrossRefGoogle Scholar
  127. Yarime M, Trencher G, Mino T, Scholz RW, Olsson L, Ness B et al (2012) Establishing sustainability science in higher education institutions: towards an integration of academic development, institutionalization, and stakeholder collaborations. Sustain Sci 7:101–113CrossRefGoogle Scholar

Copyright information

© Springer Japan 2015

Authors and Affiliations

  1. 1.Fraunhofer Institute for Interfacial Engineering and Biotechnology (IGB)StuttgartGermany
  2. 2.Department of PsychologyUniversity of ZurichZurichSwitzerland
  3. 3.Department for Knowledge and Communication ManagementDanube University KremsKremsAustria
  4. 4.Weatherhead Center for International Affairs (WCFIA)Harvard UniversityCambridgeUSA

Personalised recommendations