Skip to main content

The development of sustainable assessment method for Saudi Arabia built environment: weighting system

Abstract

Our built environment is responsible for some of the most serious global and local environmental change. The construction industry, therefore, faces pressure to increase the sustainability of its practices reflected in the development of stringent regulations and environmental assessment methods, designed to mitigate such negative impacts. However, these well-known methods (e.g., BREEAM, LEED, SBTool, and CASBEE) have not originally been designed to suit developing countries (including Saudi Arabia). This paper proposes to customize an adapted weighting system that prioritizes Saudi environmental assessment method (SEAM) categories. The research methodology involves the use of analytic hierarchy process (AHP). Expert choice software was the main tool to analyze the input data. This research instrument involves the participation of a number of leading, global experts in the field of environmental and sustainable development, as well as professionals and highly informed local experts from government, academia, and industry. The results reveal that well-known environmental assessment methods are not fully applicable to the Saudi Arabia built environment, as reflected in the resulting categories, criteria and weighting system of SEAM.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  • Al Saud M (2010) Assessment of flood hazard of Jeddah area 2009, Saudi Arabia. J Water Resour Prot 2(9):839–847

    Article  Google Scholar 

  • Al-Harbi KM (2001) Application of the AHP in project management. Int J Project Manag 19(1):19–27

    Article  Google Scholar 

  • Ali HH, Al Nsairat SF (2009) Developing a green building assessment tool for developing countries—case of Jordan. Build Environ 44(5):1053–1064. doi:10.1016/j.buildenv.2008.07.015

    Article  Google Scholar 

  • Ali H, Alfalah G (2010) Sustainable architectural applications in the Gulf States-post occupancy evaluation case study of Kingdom of Saudi Arabia. Paper presented at the proceedings of the 17th symposium for improving building systems in hot and humid climates, Austin Texas August 24–25

  • Al-Sanea SA, Zedan MF, Al-Hussain SN (2012) Effect of thermal mass on performance of insulated building walls and the concept of energy savings potential. Appl Energy 89(1):430–442. doi:http://dx.doi.org/10.1016/j.apenergy.2011.08.009

  • Alyami SH, Rezgui Y (2012) Sustainable building assessment tool development approach. Sustain Cities Soc 5:52–62. doi:10.1016/j.scs.2012.05.004

    Article  Google Scholar 

  • Alyami SH, Rezgui Y, Kwan A (2013) Developing sustainable building assessment scheme for Saudi Arabia: Delphi consultation approach. Renew Sustain Energy Rev 27:43–54

    Article  Google Scholar 

  • Badri MA, Abdulla MH (2004) Awards of excellence in institutions of higher education: an AHP approach. Int J Educ Manag 18(4):224–242

    Article  Google Scholar 

  • Bahammam A (1998) Factors which influence the size of the contemporary dwelling: Riyadh, Saudi Arabia. Habitat Int 22(4):557–570. doi:10.1016/S0197-3975(98)00018-6

    Article  Google Scholar 

  • BRE (2008) Multi-residential, BREEAM Scheme Document., vol SD 5064 issue: 2.0. BRE Global Ltd

  • BRE (2013) BRE home page. http://www.bre.co.uk/index.jsp. Accessed 1 June 2013

  • Burdová EK, Vilčeková S (2012) Energy performance indicators developing. Energy Procedia 14:1175–1180. doi:10.1016/j.egypro.2011.12.1072

    Article  Google Scholar 

  • CASBEE (2011) CASBEE homepage. http://www.ibec.or.jp/CASBEE/english/. Accessed Aug 2011

  • Chandratilake SR, Dias WPS (2013) Sustainability rating systems for buildings: comparisons and correlations. Energy 59:22–28. doi:10.1016/j.energy.2013.07.026

    Article  Google Scholar 

  • Chang K-F, Chiang C-M, Chou P-C (2007) Adapting aspects of GBTool 2005—searching for suitability in Taiwan. Build Environ 42(1):310–316. doi:10.1016/j.buildenv.2005.08.015

    Article  Google Scholar 

  • Chew MYL, Das S (2008) Building grading systems: a review of the state-of-the-art. Archit Sci Rev 51(1):3–13. doi:10.3763/asre.2008.5102

    Article  Google Scholar 

  • Chowdhury S, Sumita U, Islam A, Bedja I (2014) Importance of policy for energy system transformation: diffusion of PV technology in Japan and Germany. Energy Policy 68:285–293

    Article  Google Scholar 

  • Cole RJ (1998) Emerging trends in building environmental assessment methods. Build Res Inf 26(1):3–16. doi:10.1080/096132198370065

    Article  Google Scholar 

  • Cole RJ (2000) Building environmental assessment methods: assessing construction practices. Constr Manag Econ 18(8):949–957. doi:10.1080/014461900446902

    Article  Google Scholar 

  • Cole RJ (2001) Lessons learned, future directions and issues for GBC. Build Res Inf 29(5):355–373. doi:10.1080/09613210110064286

    Article  Google Scholar 

  • Cole R (2005) Building environmental assessment methods: redefining intentions and roles. Build Res Inf 33(5):455–467. doi:10.1080/09613210500219063

    Article  Google Scholar 

  • Cole R (2006) Shared markets: coexisting building environmental assessment methods. Build Res Inf 34(4):357–371. doi:10.1080/09613210600724624

    Article  Google Scholar 

  • El-Ghonemy AMK (2012) Future sustainable water desalination technologies for the Saudi Arabia: a review. Renew Sustain Energy Rev 16(9):6566–6597. doi:10.1016/j.rser.2012.07.026

    CAS  Article  Google Scholar 

  • Grace KCD (2008) Sustainable construction—the role of environmental assessment tools. J Environ Manag 86(3):451–464. doi:10.1016/j.jenvman.2006.12.025

    Article  Google Scholar 

  • Green M (2004) Recent developments in photovoltaics. Sol Energy 76(1):3–8

    CAS  Article  Google Scholar 

  • Haapio A, Viitaniemi P (2008) A critical review of building environmental assessment tools. Environ Impact Assess Rev 28(7):469–482. doi:10.1016/j.eiar.2008.01.002

    Article  Google Scholar 

  • Hajjar NTaB (2014) Energy and environment in Saudi Arabia: concerns and opportunities. Economic policy, Springer. doi: 10.1007/978-3-319-02982-5

  • Hamakawa Y (1997) An accelerated promotion of the New Sunshine Project and recent advances of PV Technologies in Japan. Proc of ISES’97

  • Hepbasli A, Alsuhaibani Z (2011) A key review on present status and future directions of solar energy studies and applications in Saudi Arabia. Renew Sustain Energy Rev 15(9):5021–5050. doi:10.1016/j.rser.2011.07.052

    Article  Google Scholar 

  • Horvat M, Fazio P (2005) Comparative review of existing certification programs and performance assessment tools for residential buildings. Archit Sci Rev 48(1):69–80. doi:10.3763/asre.2005.4810

    Article  Google Scholar 

  • IES (2013) IES-VE home page. http://www.iesve.com/software/ve-pro/analysis-tools/ve-navigators. Accessed 15th June 2013

  • KACST (2002) Strategic priorities for building and construction technology. KACST. http://www.kacst.edu.sa/en/research/Documents/BuildingAndConstruction.pdf. Accessed 13 July 2012

  • Kajenthira A, Siddiqi A, Anadon LD (2012) A new case for promoting wastewater reuse in Saudi Arabia: bringing energy into the water equation. J Environ Manag 102:184–192

    CAS  Article  Google Scholar 

  • Kajikawa Y, Inoue T, Goh TN (2011) Analysis of building environment assessment frameworks and their implications for sustainability indicators. Sustain Sci 6(2):233–246

    Article  Google Scholar 

  • Kanagaraj G, Mahalingam A (2011) Designing energy efficient commercial buildings—a systems framework. Energy Build 43(9):2329–2343

    Article  Google Scholar 

  • Kawazu Y SN, Yokoo N, Oka T. Comparison of the assessment results of BREEAM, LEED, GBTool and CASBEE. In: In proceedings of the 2005 sustainable building conference (SB05), Tokyo, Japan

  • Kim J-H, Augenbroe G, Suh H-S Comparative study of the leed and ISO-CEN building energy performance rating methods. In: 13th conference of international building performance association, France, 2013

  • Lee WL, Burnett J (2006) Customization of GBTool in Hong Kong. Build Environ 41(12):1831–1846. doi:10.1016/j.buildenv.2005.06.019

    Article  Google Scholar 

  • Lee WL, Chau CK, Yik FWH, Burnett J, Tse MS (2002) On the study of the credit-weighting scale in a building environmental assessment scheme. Build Environ 37(12):1385–1396. doi:10.1016/S0360-1323(02)00006-9

    Article  Google Scholar 

  • Liberatore MJ, Nydick RL (2008) The analytic hierarchy process in medical and health care decision making: a literature review. Eur J Oper Res 189(1):194–207. doi:10.1016/j.ejor.2007.05.001

    Article  Google Scholar 

  • Mahdi IM, Alreshaid K (2005) Decision support system for selecting the proper project delivery method using analytical hierarchy process (AHP). Int J Project Manag 23(7):564–572

    Article  Google Scholar 

  • Mao X, Lu H, Li Q (2009) A comparison study of mainstream sustainable/green building rating tools in the world. In, 2009

  • Masdarcity (2013) Masdar city offical website. http://www.masdarcity.ae/en/. Accessed 7th July 2013

  • Meesapawong P, Rezgui Y, Li H (2013) Planning innovation orientation in public research and development organizations: using a combined Delphi and analytic hierarchy process approach. Technol Forecast Soc Change (0). doi:10.1016/j.techfore.2013.12.023

  • Obaid RR (2008) Present state, challenges, and future of power generation in Saudi Arabia. Paper presented at the IEEE Energy2030, Atlanta, GA USA, 17–18 November, 2008

  • Okoli C, Pawlowski SD (2004) The Delphi method as a research tool: an example, design considerations and applications. Inf Manag 42(1):15–29. doi:10.1016/j.im.2003.11.002

    Article  Google Scholar 

  • Ouda OK (2013) Towards assessment of Saudi Arabia public awareness of water shortage problem. Resour Environ 3(1):10–13

    Google Scholar 

  • Pohekar S, Ramachandran M (2004) Application of multi-criteria decision making to sustainable energy planning—a review. Renew Sustain Energy Rev 8(4):365–381

    Article  Google Scholar 

  • Raslanas S, Stasiukynas A, Jurgelaitytė E (2013) Sustainability assessment studies of recreational buildings. Procedia Eng 57(0):929–937. doi:http://dx.doi.org/10.1016/j.proeng.2013.04.118

  • Saaty TL (1990) How to make a decision: the analytic hierarchy process. Eur J Oper Res 48(1):9–26

    Article  Google Scholar 

  • Saaty TL (1994) How to make a decision: the analytic hierarchy process. Interfaces 24(6):19–43

    Article  Google Scholar 

  • Sam K (2010) Chapter 2—basic LEED™ concepts. In: LEED practices, certification, and accreditation handbook. Butterworth-Heinemann, Boston, pp 19–48. doi:10.1016/b978-1-85617-691-0.00002-3

  • SENS (2013) Home page of Saudi Environmental Society. http://www.sens.org.sa/index.php. Accessed 7th October 2013

  • Sev A (2011) A comparative analysis of building environmental assessment tools and suggestions for regional adaptations. Civil Eng Environ Syst 28(3):231–245. doi:10.1080/10286608.2011.588327

    Article  Google Scholar 

  • SGBC (2013) Home page of Saudi Green Building Council. http://www.saudigbc.com/. Accessed 7th October 2013

  • Taleb HM, Sharples S (2011) Developing sustainable residential buildings in Saudi Arabia: a case study. Appl Energy 88(1):383–391. doi:10.1016/j.apenergy.2010.07.029

    Article  Google Scholar 

  • To K, Fernández JE (2012) Alternative urban technology demonstration projects for innovative Cities. Paper presented at the third international engineering systems symposium, CESUN, Delft University of Technology

  • Todd JA, Geissler S (1999) Regional and cultural issues in environmental performance assessment for buildings. Build Res Inf 27(4–5):247–256. doi:10.1080/096132199369363

    Article  Google Scholar 

  • USGBC (2013) USGBC home page. https://new.usgbc.org/. Accessed 1 June 2013

  • Wong JK, Li H (2008) Application of the analytic hierarchy process (AHP) in multi-criteria analysis of the selection of intelligent building systems. Build Environ 43(1):108–125

    Article  Google Scholar 

  • Wong J, Li H, Lai J (2008) Evaluating the system intelligence of the intelligent building systems: part 2: construction and validation of analytical models. Automation Construct 17(3):303–321

    Article  Google Scholar 

  • Ying X, Zeng G-M, Chen G-Q, Tang L, Wang K-L, Huang D-Y (2007) Combining AHP with GIS in synthetic evaluation of eco-environment quality—a case study of Hunan Province, China. Ecol Model 209(2):97–109

    Article  Google Scholar 

  • Zayed T, Amer M, Pan J (2008) Assessing risk and uncertainty inherent in Chinese highway projects using AHP. Int J Project Manag 26(4):408–419

    Article  Google Scholar 

  • Zetland D, Gasson C (2013) A global survey of urban water tariffs: are they sustainable, efficient and fair? Int J Water Resour Dev 29(3):327–342

    Article  Google Scholar 

  • Zheng G, Jing Y, Huang H, Zhang X, Gao Y (2009) Application of life cycle assessment (LCA) and extenics theory for building energy conservation assessment. Energy 34(11):1870–1879

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saleh H. Alyami.

Additional information

Handled by Yuya Kajikawa, Tokyo Institute of Technology, Japan.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Alyami, S.H., Rezgui, Y. & Kwan, A. The development of sustainable assessment method for Saudi Arabia built environment: weighting system. Sustain Sci 10, 167–178 (2015). https://doi.org/10.1007/s11625-014-0252-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11625-014-0252-x

Keywords

  • Sustainable development
  • Environmental assessment method
  • SEAM