Skip to main content

Advertisement

Log in

Agro-environmental sustainability assessment using multicriteria decision analysis and system analysis

  • Original Article
  • Published:
Sustainability Science Aims and scope Submit manuscript

Abstract

Transparency and reproducibility remain challenges for sustainability assessment, particularly in developing world contexts where formal scientific information is often limited. We posit that even in such contexts, sustainability assessment can be productive and informative if the underlying assumptions about sustainability are made transparent. Thus, the process of assessment can be as instructive as the results, if not more so. In this article, we describe and discuss how we combined multicriteria decision analysis and system analysis as a unified approach to sustainability assessment. This approach is transparent, practical, flexible, and reproducible; it also facilitates the development of recommendations for enhancing sustainability. We illustrate the approach with examples from a recent environmental sustainability assessment of irrigated commercial maize production in Sinaloa, Mexico.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. Some stakeholders recommended additional variables. These were not incorporated because empirical data or expert knowledge were not available, or the recommendations were beyond the environmental scope of the assessment.

  2. We ultimately decided not to assess the variable of “yield” because its meaning was captured in the assessment of the variable of agricultural land use. Furthermore, yield had the lowest weight of all the variables, so its exclusion had a negligible effect on the relative weights of the remaining variables. While we did not assess yield for its sustainability, we did include yield in the system analysis (see “System analysis” below).

  3. In the 2009–2010 growing season, a project team (led by Eakin) surveyed 449 maize farmers in Irrigation District 010 near Culiacán, Sinaloa, representing 2.37 % of irrigation users in the irrigation district [(Secretaría de Medio Ambiente y Recursos Naturales (SEMARNAT) and Comisión Nacional del Agua (CONAGUA) 2009)]. They employed a cluster sampling strategy, in which five irrigation módulos (administrative units of farmers with water rights within the district) were randomly selected, and within them, respondents were selected at random for the survey from a list of módulo members provided by each módulo, stratified by landholding size. The number of respondents in each módulo was roughly proportional to the módulo’s size.

  4. Hansen (1996) distinguished between what he referred to as “sustainability interpreted as an approach” (what Binder et al. (2010) called “means oriented” approaches) and “sustainability interpreted as a property of agriculture” (what Binder et al. (2010) called “goal-oriented” approaches). According to Hansen (1996, p. 117), “Sustainability interpreted as an approach to agriculture developed in response to concerns about impacts of agriculture with motivating adherence to sustainable ideologies and practices as its goal”.

References

  • Aguilar Soto ÓA (2000) Los empresarios agrícolas en la producción y comercialización de maíz en Sinaloa. Theorethikos, Año III(003)

  • Aguilar Soto ÓA (2004) Las élites del maíz. Universidad Autónoma de Sinaloa, Culiacán, México

  • Aguilar Soto ÓA (2007) Control transnacional del sistema productivo-comercial del maíz sinaloense. In: Aguilar Soto ÓA, Maya Ambía CJ (eds) Sinaloa en la Globalización: Costos ecológicos, sociales y económicos. Universidad Autónoma de Sinaloa, Plaza y Valdés, SA de CV, México, pp 165–195

  • American Society of Agronomy (ASA) (1989) Decision reached on sustainable agriculture. Agronomy News

  • Bausch JC (2011a) Environmental sustainability and conventional agriculture: an assessment of maize monoculture in Sinaloa, Mexico using multicriteria decision analysis and network analysis. Arizona State University, Tempe

  • Bausch JC (2011) Sustentabilidad Ambiental del Maíz en Sinaloa: Una evaluación usando Análisis de Decisión Multicritero y Análisis de Redes. Stakeholder workshop, Culiacán, Sinaloa. Available online at: http://maizeproject.wordpress.com/2011/08/02/sustentabilidad-ambiental-del-maiz-en-sinaloa/

  • Beinat E (1997) Value functions for environmental management. Kluwer Academic Publishers, Norwell

    Book  Google Scholar 

  • Binder CR, Feola G, Steinberger JK (2010) Considering the normative, systemic and procedural dimensions in indicator-based sustainability assessments in agriculture. Environ Impact Assess Rev 30(2):71–81

    Article  Google Scholar 

  • Borgatti SP (2002) Netdraw network visualization. Version 2.098. Analytic Technologies, Harvard

  • Borgatti SP, Everett MG, Freeman LC (2002) UCINET for Windows: Software for Social Network Analysis. Version 6.308. Analytic Technologies, Harvard

  • Bosshard A (2000) A methodology and terminology of sustainability assessment and its perspectives for rural planning. Agric Ecosyst Environ 77(1–2):29–41

    Article  Google Scholar 

  • Brans JP, Macharis C, Kunsch PL, Chevalier A, Schwaninger M (1998) Combining multicriteria decision aid and system dynamics for the control of socio-economic processes. An iterative real-time procedure. Eur J Oper Res 109(2):428–441

    Article  Google Scholar 

  • Carvalho FP, Fowler SW, Readman JW (1996) Agrochemical residues in the Altata-Ensenada del Pabellon coastal lagoon (Sinaloa, Mexico): a need for integrated coastal management. Int J Environ Health Res 6(3):209–220

    Article  CAS  Google Scholar 

  • Checkland P, Poulter J (2006) Learning for action: a short definitive account of soft systems methodology, and its use for practitioners, teachers and students. Wiley and Sons, West Sussex

    Google Scholar 

  • Chung ES, Lee KS (2009) Prioritization of water management for sustainability using hydrologic simulation model and multicriteria decision making techniques. J Environ Manag 90(3):1502–1511

    Article  Google Scholar 

  • Cruz-Torres ML (2004) Lives of dust and water: an anthropology of change and resistance in Northwestern Mexico. The University of Arizona Press, Tucson

    Google Scholar 

  • de Ita Rubio A (2003) Los impactos socioeconómicos y ambientales de la liberalización comercial de los granos básicos en el contexto del TLCAN: El caso de Sinaloa. Centro de Estudios para el Cambio en el Campo Mexicano, Centro Mexicano de Derecho Ambiental

  • Díaz Valdés T (2006) Influencia del sistema de riego superficial en la dinámica del nitrógeno en el suelo, la planta y el agua en un cultivar de maíz (Zea mays L.). Fundación Produce Sinaloa, A.C. Memoria Anual Ejercicio Operativo 2005–2006:87–89

  • Díaz Valdés T, Pérez DNW, López GA, Partidas RL, Suárez YE (2008) Manejo sostenible del agua en zonas semiáridas: evaluación de dos técnicas de riego y fertilización nitrogenada en Sinaloa, México. Revista Ciencias Técnicas Agropecuarias 17(001):53–56

    Google Scholar 

  • Eakin H, Bojórquez-Tapia LA (2008) Insights into the composition of household vulnerability from multicriteria decision analysis. Glob Environ Change 18(2008):112–127

    Article  Google Scholar 

  • Eakin H, Bojórquez-Tapia LA, Diaz RM, Castellanos E, Haggar J (2011) Adaptive capacity and social-environmental change: theoretical and operational modeling of smallholder coffee systems response in Mesoamerican Pacific Rim. Environ Manag 47(3):352–367

    Article  Google Scholar 

  • Eakin H, Bausch JC, Sweeney S (2014) Agrarian winners of neoliberal reform: the “maize boom” of Sinaloa, Mexico. J Agrar Change 14(1):26–51

    Google Scholar 

  • Foley JA, Ramankutty N, Brauman KA, Cassidy ES, Gerber JS, Johnston M et al (2011) Solutions for a cultivated planet. Nature 478(7369):337–342

    Article  CAS  Google Scholar 

  • Gasparatos A, El-Haram M, Horner M (2008) A critical review of reductionist approaches for assessing the progress towards sustainability. Environ Impact Assess Rev 28(2008):286–311

    Article  Google Scholar 

  • Gobierno del Estado de Sinaloa (2009) Maíz de Sinaloa (PowerPoint). Gobierno del Estado de Sinaloa, Culiacán

    Google Scholar 

  • Gobierno del Estado de Sinaloa (2010) Sexto Informe de Gobierno. Available online at: http://www.laipsinaloa.gob.mx/index.php?option=com_flexicontent&view=items&cid=8:cgaip&id=3578:6d-informe-de-gobierno

  • Hansen JW (1996) Is agricultural sustainability a useful concept? Agric Syst 50(1996):117–143

    Article  Google Scholar 

  • Hansen B, Alrøe HF, Kristensen ES (2001) Approaches to assess the environmental impact of organic farming with particular regard to Denmark. Agric Ecosyst Environ 83(2001):11–26

    Article  Google Scholar 

  • Ingold K (2011) Network structures within policy processes: coalitions, power, and brokerage in swiss climate policy. Policy Stud J 39(3):435–459

    Article  Google Scholar 

  • Kates RW, Clark WC, Corell R, Hall MJ, Jaeger CC, Lowe I et al (2001) Sustainability science. Science 292(5517):641–642

    Article  CAS  Google Scholar 

  • Lahdelma R, Salminen P, Hokkanen J (2000) Using multicriteria methods in environmental planning and management. Environ Manag 26:595–605

    Article  Google Scholar 

  • Leach M, Scoones I, Stirling A (2010) Dynamic sustainabilities: technology, environment, social justice. Earthscan, Washington, DC

    Google Scholar 

  • Linkov I, Seager TP (2011) Coupling multi-criteria decision analysis, life-cycle assessment, and risk assessment for emerging threats. Environ Sci Technol 45:5068–5074

    Article  CAS  Google Scholar 

  • Liu KFR (2007) Evaluating environmental sustainability: an integration of multiple-criteria decision-making and fuzzy logic. Environ Manag 39(5):721–736

    Article  Google Scholar 

  • Lootsma FA (1999) Multi-criteria decision analysis via ratio and difference judgement. Kluwer Academic Publishers, Dordrecht

    Book  Google Scholar 

  • Maya Ambía CJ, Ponce Conti YdC (eds) (2010) Apertura comercial y (sub)desarrollo regional: La experiencia de Sinaloa. Universidad Autónoma de Sinaloa, México, DF

  • Meadows DH (2008) Thinking in systems, a primer. Chelsea Green Publishing, White River Junction

    Google Scholar 

  • Mendoza GA, Prabhu R (2005) Combining participatory modeling and multi-criteria analysis for community-based forest management. For Ecol Manag 207(2005):145–156

    Article  Google Scholar 

  • Mitchell SD (2009) Unsimple truths: science, complexity, and policy. The University of Chicago Press, Chicago

    Book  Google Scholar 

  • Mosse D (2001) ‘People’s knowledge, participation and patronage: operations and representations in rural development. In: Cooke B, Kothari U (eds) Participation: the new tyranny?. Zed Books, New York, pp 16–35

    Google Scholar 

  • Munda G (2004) Social multi-criteria evaluation: methodological foundations and operational consequences. Eur J Oper Res 158(2004):662–677

    Article  Google Scholar 

  • Nadal A (1999) Issue study 1. Maize in Mexico: Some environmental implications of the North American Free Trade Agreement (NAFTA) Assessing the environmental effects of the North American Free Trade Agreement (NAFTA): an analytical framework (phase II) and issue studies. commission for environmental cooperation, Montréal, pp 65–102

  • Noh J, Lee KM (2003) Application of multiattribute decision-making methods for the determination of relative significance factor of impact categories. Environ Manag 31(5):633–641

    Article  Google Scholar 

  • Ojeda-Bustamante W, Sifuentes-Ibarra E, Unland-Weiss H (2006) Integral programming for corn irrigation in Northern Sinaloa, México. Agrociencia 40(1):13–25

    Google Scholar 

  • Ortega Noriega S (1999) Breve historia de Sinaloa. Fideicomiso Historia de las Americas, El Colegio de México, México, DF

  • Overman AR, Sholtz RV III (2002) Corn response to irrigation and applied nitrogen. Commun Soil Sci Plant Anal 33(19&20):3609–3619

    Article  CAS  Google Scholar 

  • Páez-Osuna F, Ramírez Reséndiz G, Ruiz Fernández AC, Soto Jiménez MF (2007) La contaminación por nitrógeno y fósforo en Sinaloa: Flujos, fuentes, efectos, y opciones de manejo (1 ed). Universidad Nacional Autónoma de México, México

  • Parris TM, Kates RW (2003) Characterizing and measuring sustainable development. Annu Rev Environ Resour 28:559–586

    Article  Google Scholar 

  • Pischke F, Cashmore M (2006) Decision-oriented environmental assessment: an empirical study of its theory and methods. Environ Impact Assess Rev 26(2006):643–662

    Article  Google Scholar 

  • Pope J, Annandale D, Morrison-Saunders A (2004) Conceptualising sustainability assessment. Environ Impact Assess Rev 24(6):595–616

    Article  Google Scholar 

  • Reed MS, Fraser EDG, Dougill AJ (2005) An adaptive learning process for developing and applying sustainability indicators with local communities. Ecol Econ 59(4):406–418

    Article  Google Scholar 

  • Rigby D, Caceres D (1997) The sustainability of agricultural systems (No. 10). Institute for development policy and management, University of Manchester, Manchester

  • Rigby D, Woodhouse P, Young T, Burton M (2001) Constructing a farm level indicator of sustainable agricultural practice. Ecol Econ 39(2001):463–478

    Article  Google Scholar 

  • Rubio Rocha YG, Beltrán Magallanes JA (2003) Biodiversidad y conservación en ambientes costeros. In: Cifuentes Lemus JL, Gaxiola López J (eds) Atlas de los Ecosistemas de Sinaloa. El Colegio de Sinaloa, Culiacán, Sinaloa, pp 99–109

  • Santos SP, Belton V, Howick S (2002) Adding value to performance measurement by using system dynamics and multicriteria analysis. Int J Oper Prod Manag 22(11):1246–1272

    Article  Google Scholar 

  • Sarewitz D, Kriebel D, Clapp R, Crumbley C, Hoppin P, Jacobs M et al (2010) The sustainable solutions agenda: the Consortium for Science, Policy and Outcomes (CSPO), Arizona State University and Lowell Center for Sustainable Production, University of Massachusetts, Lowell

  • Scott J (2000) Social network analysis, a handbook, 2nd edn. Sage Publications Inc, London

    Google Scholar 

  • Secretaría de Medio Ambiente y Recursos Naturales (SEMARNAT), Comisión Nacional del Agua (CONAGUA) (2009) Resumen de la Organización Para La Operación (2008–2009): Distrito de Riego No. 010 Culiacán-Humaya (table), Culiacán, Sinaloa

  • Servicio de Información Agroalimentaria y Pesquera (SIAP) (2010) Anuario Estadístico de la Producción Agrícola. Available online at: http://www.siap.gob.mx/index.php?option=com_content&view=article&id=10&Itemid=15

  • Szidarovsky F, Gershom ME, Duckstein L (1986) Techniques for multiobjective decision making in systems management. Elsevier, Amsterdam

    Google Scholar 

  • Taylor DC, Mohamed ZA, Shamsudin MN, Mohayidin MG, Chiew EFC (1993) Creating a farmer sustainability index: a Malaysian case study. Am J Altern Agric 8(4):175–184

    Article  Google Scholar 

  • Thompson PB (2007) Agricultural sustainability: what it is and what it is not. Int J Agric Sustain 5(1):5–16

    Google Scholar 

  • Triantaphyllou E (2000) Multi-criteria decision making methods: a comparative study. Kluwer Academic Publishers, Boston

    Book  Google Scholar 

  • Trujillo Félix JdD, Gaxiola Carrasco H (2010) Economía y agricultura en Sinaloa. In: Maya Ambía CJ, Ponce Conti YdC (eds) Apertura comercial y (sub)desarrollo regional: La experiencia de Sinaloa, Universidad Autónoma de Sinaloa, México, DF, pp 19–47

  • Trujillo Félix JdD, López Cervantes G (2007) Granos básicos y especialización agrícola en Sinaloa. In: Aguilar Soto ÓA, Maya Ambía CJ (eds) Sinaloa en la Globalización: Costos ecológicos, sociales y económicos, Universidad Autónoma de Sinaloa, Plaza y Valdés, SA de CV, México, pp 135–163

  • Van Cauwenbergh N, Biala K, Bielders C, Brouckaert V, Franchois L, Garcia Cidad V et al (2007) SAFE: a hierarchical framework for assessing the sustainability of agricultural systems. Agric Ecosyst Environ 120(2007):229–242

    Article  Google Scholar 

  • Wals AEJ, Jickling B (2002) “Sustainability” in higher education: from doublethink and newspeak to critical thinking and meaningful learning. Int J Sustain High Educ 3(3):221–232

    Article  Google Scholar 

  • Wiek A, Lang DJ, Siegrist M (2008) Qualitative system analysis as a means for sustainable governance of emerging technologies: the case of nanotechnology. J Clean Prod 16(8):988–999

    Article  Google Scholar 

  • Wiek A, Ness B, Schweizer-Ries P, Brand FS, Farioli F (2012) From complex systems analysis to transformational change: a comparative appraisal of sustainability science projects. Sustain Sci 7(Suppliment 1):5–24

    Google Scholar 

  • Wright A (2005) The death of Ramón González: The Modern Agricultural Dilemma, 2nd edn. University of Texas Press, Austin

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dr. Jorge Armenta, Dr. Daniel L. Childers (ASU), and Ing. Adalberto Mustieles for their support in this research; Sergio Bourguet (UNAM) for his help formatting the figures; and Allain Barnett and Dr. Arnim Wiek (ASU) for helpful comments on earlier drafts of the manuscript. We thank the interviewees and workshop participants who generously shared their time and knowledge. We also thank the reviewers for their valuable comments and contributions. The beginning stages of this research were supported by a Student Sustainability Fellowship from the North American Center for Transborder Studies-Southwest Consortium for Environmental Research & Policy. Fieldwork in summer 2011 was supported by a Neely Charitable Foundation Food and Agriculture Sustainability Research Grant. This material is based upon work supported by the National Science Foundation under Grant No. 0826871. Any opinions, findings and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation (NSF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julia C. Bausch.

Additional information

Handled by Osamu Saito, UNU-Institute for Sustainability and Peace (ISP), Japan.

Appendices

Appendix A: Questionnaire for ranking system variables (translated from Spanish)

  1. (1)

    Considering the sustainability of maize cultivation in Sinaloa as related to the environment, please rank the following environmental issues according to their importance, with #1 as the most important, and #12 as the least important. If a good indicator for any of the environmental issues occurs to you, please write it in the third column.

    Environmental issues

    Ranking

    Indicator?

    Soil erosion

      

    Soil quality (e.g., organic material, salinity, etc.)

      

    Water quality (e.g., pollution, agricultural runoff, etc.)

      

    Incidence of pests, weeds, and/or disease

      

    Yield/yield loss (e.g., Tons/ha, surface area not harvested, etc.)

      

    Natural terrestrial ecosystems (e.g., forests, sand dunes, etc.)

      

    Natural aquatic ecosystems (e.g., rivers, lakes, the ocean; e.g., eutrophication, dissolved solids, fish kills, etc.)

      

    Nitrogen fertilizer use (e.g., efficiency, volume used, etc.)

      

    Irrigation water use (e.g., allocation of water, volume of water used per season, etc.)

      

    Fossil fuel use (e.g., diesel consumption per season, etc.)

      

    Pesticide use (e.g., toxicity of pesticides, volume of pesticides applied per season, etc.)

      

    Land use (e.g., crop diversity, land use change, etc.)

      
  2. (2)

    Are there other issues that are not listed that should be considered? What are they, what would be a good indicator, and where would you put them in the ranking of importance to environmental sustainability?

Appendix B: Value functions

A value function is a mathematical expression that is used to normalize values of a variable in a common scale (Beinat, 1997). They involve a transformation from a natural scale to a scale of 0 (anti-ideal) to 1 (ideal). In general, there are two types of value functions: nominal and continuous. Nominal value functions are used to represent the level of satisfaction provided by different states denoted by names, such as soil type. Continuous value functions are used to represent the level of satisfaction provided by the states of continuous variables, such as percent, or hectares. Because they are continuous, the functions form a family of continuous curves. In sustainability assessment, the level of satisfaction (v) refers to the proximity of the value of the variable in its natural scale to the ideal state.

Increasing

The level of satisfaction increases as the value of the variable increases, reaching its ideal value at the highest point of the range. There are two types of increasing functions:

$${\text{Concave:}}\,v\text{ } = \text{ }\frac{{e^{yx} - y^{ - } }}{{y^{ * } - y^{ - } }}$$
(A.1)
$${\text{Convex:}}\,v\text{ } = \text{ }\frac{{1 - e^{-\gamma x} - y^{ - } }}{{y^{ * } - y^{ - } }}$$
(A.2)

when \(\gamma \text{ } = \text{ } - \log \left( {\frac{{\log (1.1\text{ } + \text{ }0.88(10\text{ } - \text{ }\beta )}}{{\log (x_{{\text{max}} } )}}} \right)^{2}\) (A.3) where γ is the modulator of the exponential function (1/γ estimates the interval when the function doubles in value), β is the saturation factor that determines the depth of the curve, \(y^{ - }\) and \(y^{ * }\) are the minimum and maximum that can be obtained in the value function, and x max is the maximum value of the variable in its natural scale (see Figs. 4, 5).

Fig. 4
figure 4

Increasing concave value function

Fig. 5
figure 5

Increasing convex value function

Decreasing

The level of satisfaction decreases as the variable increases, reaching the ideal value at the lowest point of the range. There are two types of decreasing functions:

$${\text{Concave: }}v\text{ } = \text{ }\frac{{e^{-\gamma x} - y^{ - } }}{{y^{ * } - y^{ - } }}$$
(A.4)
$${\text{Convex:}}\,v\text{ } = \text{ }\frac{{1 - {\text{e}}^{{ - \left( {\frac{x - 30}{\delta }} \right)}} - y^{ - } }}{{y^{ * } - y^{ - } }}$$
(A.5)

when \(\delta \text{ } = \text{ }10^{{\left( {\frac{3}{{10(\log (x_{{\text{max}} } - \beta ))}}} \right)}}\)where δ is the modulator of the exponential function (see Figs. 6, 7).

Fig. 6
figure 6

Decreasing concave value function

Fig. 7
figure 7

Decreasing convex value function

Optimum

This family of curves includes the bell function, in which the level of satisfaction increases as the variable increases to a point in the middle of its range where it reaches its ideal point, after which the level of satisfaction decreases as the variable continues to increase until reaching the highest point in its range:

$${\text{Bell:}}\, v\text{ } = \text{ }\frac{{{\text{e}}^{{ - \left( {\frac{{x - x_{{\text{max}} } }}{\alpha }} \right)^{2} }} - y^{ - } }}{{y^{ * } - y^{ - } }}$$
(A.6)

when \(x_{{\text{min}} } < x^{ * } < x_{{\text{max}} }\)

where α is the maximum extent of the bell, x min is the minimum value of the variable in its natural scale, and x * is the value of the ideal point of the variable in its natural scale (see Fig. 8).

Fig. 8
figure 8

Optimal maximum value function

In addition to the bell curve, this family of curves includes sigmoid relationships:

Increasing sigmoid:

$${\text{Optimal maximum:}}\,v\text{ } = \text{ }\frac{{{\text{e}}^{{ - \left( {\frac{{x - x_{{\text{max}} } }}{\alpha }} \right)^{2} }} - y^{ - } }}{{y^{ * } - y^{ - } }}$$
(A.7)

when x * = x max

$${\text{Optimal minimum:}}\,v\text{ } = 1-\frac{{{\text{e}}^{{ - \left( {\frac{{x - x_{{\text{min}} } }}{\alpha }} \right)^{2} }} - y^{ - } }}{{y^{ * } - y^{ - } }}$$
(A.8)

when \(x^{ - } \text{ } = \text{ }x_{{\text{min}} }\)

where \(x^{ - }\) is the value of the anti-ideal of the variable in its natural scale (see Figs. 9, 10).

Fig. 9
figure 9

Increasing sigmoid optimal maximum value function

Fig. 10
figure 10

Increasing sigmoid optimal minimum value function

Decreasing sigmoid:

$${\text{Optimal maximum}}:v\text{ } = \text{ }\frac{{{\text{e}}^{{ - \left( {\frac{{x - x_{{\text{max}} } }}{\alpha }} \right)^{2} }} - y^{ - } }}{{y^{ * } - y^{ - } }}$$
(A.9)

when \(x^{*} \text{ } = \text{ }x_{{\text{min}} }\).

$${\text{Optimal minimum}}:v\text{ } = 1-\frac{{{\text{e}}^{{ - \left( {\frac{{x - x_{{\text{min}} } }}{\alpha }} \right)^{2} }} - y^{ - } }}{{y^{ * } - y^{ - } }}$$
(A.10)

when \(x^{ - } \text{ } = \text{ }x_{{\text{max}} }\) (see Figs. 11, 12).

Fig. 11
figure 11

Decreasing sigmoid optimal maximum value function

Fig. 12
figure 12

Decreasing sigmoid optimal minimum value function

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bausch, J.C., Bojórquez-Tapia, L. & Eakin, H. Agro-environmental sustainability assessment using multicriteria decision analysis and system analysis. Sustain Sci 9, 303–319 (2014). https://doi.org/10.1007/s11625-014-0243-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11625-014-0243-y

Keywords

Navigation