Skip to main content

Uncertainty in the difference between maps of future land change scenarios

Abstract

It is essential to measure whether maps of various scenarios of future land change are meaningfully different, because differences among such maps serve to inform land management. This paper compares the output maps of different scenarios of future land change in a manner that contrasts two different approaches to account for the uncertainty of the simulated projections. The simpler approach interprets the scenario storyline concerning the quantity of each land change transition as assumption, and then considers the range of possibilities concerning the value added by a simulation model that specifies the spatial allocation of land change. The more complex approach estimates the uncertainty of future land maps based on a validation measurement with historic data. The technique is illustrated by a case study that compares two scenarios of future land change in the Plum Island Ecosystems of northeastern Massachusetts, in the United States. Results show that if the model simulates only the spatial allocation of the land changes given the assumed quantity of each transition, then there is a clearly bounded range for the difference between the raw scenario maps; but if the uncertainties are estimated by validation, then the uncertainties can be so great that the output maps do not show meaningful differences. We discuss the implications of these results for a future research agenda of land change modeling. We conclude that a productive approach is to use the simpler method to distinguish clearly between variations in the scenario maps that are due to scenario assumptions versus variations due to the simulation model.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  • Almeida CM, Batty M, Monteiro AMV, Câmara G, Soares-Filho BS, Cerqueira GC, Pennachin CL (2003) Stochastic cellular automata modeling of urban land use dynamics: empirical development and estimation. Comput Environ Urban Syst 27:481–509

    Article  Google Scholar 

  • Berk R, Bickel P, Campbell K, Fovell R, Keller-McNulty S, Kelly E, Linn R, Park B, Perelson A, Rouphail N, Sacks J, Schoenberg F (2002) Workshop on statistical approaches for the evaluation of complex computer models. Stat Sci 17(2):173–192

    Article  Google Scholar 

  • Brown DG, Page S, Riolo R, Zellner M, Rand W (2005) Path dependence and the validation of agent-based spatial models of land use. Int J Geogr Inf Sci 19(2):153–174

    Article  Google Scholar 

  • Castella JC, Verburg PH (2007) Combination of process-oriented and pattern-oriented models of land-use change in a mountain area of Vietnam. Ecol Model 10(1):410–420

    Article  Google Scholar 

  • Castella JC, Boissau S, Trung TN, Quang DD (2005) Agrarian transition and lowland–upland interactions in mountain areas in northern Vietnam: application of a multi-agent simulation model. Agric Syst 86(3):312–332

    Article  Google Scholar 

  • Clarke KC, Gaydos LJ (1998) Loose-coupling a cellular automaton model and GIS: long-term urban growth prediction for San Francisco and Washington/Baltimore. Int J Geogr Inf Sci 12:699–714

    Article  CAS  Google Scholar 

  • Conway TM, Lathrop RG (2005) Alternative land use regulations and environmental impacts: assessing future land use in an urbanizing watershed. Landscape Urban Plan 71:1–15

    Article  Google Scholar 

  • Engelen G, White R, de Nijs T (2003) The environment explorer: spatial support system for integrated assessment of socio-economic and environmental policies in the Netherlands. Integr Assess 4(2):97–105

    Article  Google Scholar 

  • Fang K-T, Li R, Sudjianto A (2006) Design and modeling for computer experiments. Chapman & Hall/CRC, Boca Raton

    Google Scholar 

  • Foody G (1992) On the compensation for chance agreement in image classification accuracy assessment. Photogramm Eng Remote Sens 58(10):1459–1460

    Google Scholar 

  • Goldstein NC (2004) Brains vs. brawn––comparative strategies for the calibration of a cellular automata-based urban growth model. In: Atkinson P, Foody G, Darby S, Wu F (eds) GeoDynamics. CRC, Boca Raton, pp 249–272

    Google Scholar 

  • Hilferink M, Rietveld P (1999) Land use scanner: an integrated GIS based model for long term projections of land use in urban and rural areas. J Geogr Syst 1(2):155–177

    Article  Google Scholar 

  • Hill TD, Polsky C (2007) Suburbanizaiton and drought: a mixed methods vulnerability assessment in rainy Massachusetts. Environ Hazards 7(4):291–301

    Article  Google Scholar 

  • Kok K, Verburg PH, Veldkamp TA (2007) Integrated assessment of the land system: the future of land use. Land Use Policy 24:517–520

    Article  Google Scholar 

  • Manson S, Evans T (2007) Agent-based modeling of deforestation in southern Yucatán, Mexico, and reforestation in the Midwest United States. Proc Natl Acad Sci 104(52):20678–20683

    Article  CAS  Google Scholar 

  • McConnell W, Sweeney SP, Mulley B (2004) Physical and social access to land: spatio-temporal patterns of agricultural expansion in Madagascar. Agric Ecosyst Environ 101(2–3):171–184

    Article  Google Scholar 

  • Meadows D, Jorgen R, Meadows D (2004) Limits to growth: the 30 year update. Chelsea Green, White River Jct, VT

    Google Scholar 

  • Messina JP, Evans TP, Mason SM, Shortridge AM, Deadman PJ, Verburg PH (2008) Complex systems models and the management of error and uncertainty. J Land Use Sci 3(1):11–25

    Article  Google Scholar 

  • Nicolson CR, Starfieild AM, Kofinas GP, Kruse JA (2002) Ten heuristics for interdisciplinary modeling projects. Ecosystems 5:376–384

    Article  Google Scholar 

  • Pijanowski BC, Pithadia S, Shellito BA, Alexandridis K (2005) Calibrating a neural network-based urban change model for two metropolitan areas of the Upper Midwest of the United States. Int J Geogr Inf Sci 19(2):197–215

    Article  Google Scholar 

  • Pontius RG Jr (2000) Quantification error versus location error in comparison of categorical maps. Photogramm Eng Remote Sens 66(8):1011–1016

    Google Scholar 

  • Pontius RG Jr, Connors J (2009) Range of categorical associations for comparison of maps with mixed pixels. Photogramm Eng Remote Sens 75(8):963–969

    Google Scholar 

  • Pontius RG Jr, Spencer J (2005) Uncertainty in extrapolations of predictive land change models. Environ Plann B Plann Design 32:211–230

    Article  Google Scholar 

  • Pontius RG Jr, Cornell J, Hall CAS (2001) Modeling the spatial pattern of land-use change with GEOMOD2: application and validation for Costa Rica. Agric Ecosyst Environ 85(1–3):191–203

    Article  Google Scholar 

  • Pontius RG Jr, Huffaker D, Denman K (2004) Useful techniques of validation for spatially explicit land-change models. Ecol Model 179(4):445–461

    Article  Google Scholar 

  • Pontius RG Jr, Versluis AJ, Malizia NR (2006) Visualizing certainty of extrapolations from models of land change. Landsc Ecol 21(7):1151–1166

    Article  Google Scholar 

  • Pontius RG Jr, Walker R, Yao-Kumah R, Arima E, Aldrich S, Caldas M, Vergara D (2007) Accuracy assessment for a simulation model of Amazonian deforestation. Ann Assoc Am Geogr 97(4):677–695

    Article  Google Scholar 

  • Pontius RG Jr, Boersma W, Castella JC, Clarke K, de Nijs T, Dietzel C, Duan Z, Fotsing E, Goldstein N, Kok K, Koomen E, Lippitt CD, McConnell W, Sood AM, Pijanowski B, Pithadia S, Sweeney S, Trung TN, Veldkamp TA, Verburg PH (2008a) Comparing the input, output, and validation maps for several models of land change. Ann Reg Sci 42(1):11–47

    Article  Google Scholar 

  • Pontius RG Jr, Thontteh O, Chen H (2008b) Components of information for multiple resolution comparison between maps that share a real variable. Environ Ecol Stat 15(2):111–142

    Article  Google Scholar 

  • Santner TJ, Williams BJ, Notz WI (2003) The design and analysis of computer experiments. Springer, New York

    Google Scholar 

  • Silva EA, Clarke KC (2002) Calibration of the SLEUTH urban growth model for Lisbon and Porto, Portugal. Comput Environ Urban Syst 26:525–552

    Article  Google Scholar 

  • Solecki WD, Oliveri C (2004) Downscaling climate change scenarios in an urban land use change model. J Environ Manage 72:114–115

    Article  Google Scholar 

  • Václavík T (2008) Mapping land use/land cover change in the Olomouc region, Czech Republic. URISA J 20(1):45–51

    Google Scholar 

  • Verburg PH, Soepboer S, Veldkamp TA, Limpiada R, Espaldon V, Sharifah Mastura SA (2002) Modeling the spatial dynamics of regional land use: the CLUE-S Model. Environ Manage 30(3):391–405

    Article  Google Scholar 

  • Verburg PH, Rounsevell MDA, Veldkamp A (2006) Scenario-based studies of future land use in Europe. Agric Ecosyst Environ 114(1):1–6

    Article  Google Scholar 

  • Verburg PH, Eickhout B, van Meijl H (2008) A multi-scale, multi-model approach for analyzing the future dynamics of European land use. Ann Reg Sci 42(1):57–77

    Article  Google Scholar 

Download references

Acknowledgments

The United States’ National Science Foundation (NSF) supported this work via two of its programs: Long Term Ecological Research via grant OCE-0423565 and Coupled Natural Human Systems via grant BCS-0709685. Any opinions, findings, conclusions, or recommendation expressed by this paper are those of the authors and do not necessarily reflect those of the NSF. Clark Labs facilitated this work by creating the GIS software Idrisi®. We also thank anonymous reviewers whose constructive feedback helped to improve this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Gilmore Pontius Jr..

Additional information

Edited by Mitsuru Osaki and Ademola Braimoh, Hokkaido University, Japan.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Pontius, R.G., Neeti, N. Uncertainty in the difference between maps of future land change scenarios. Sustain Sci 5, 39 (2010). https://doi.org/10.1007/s11625-009-0095-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11625-009-0095-z

Keywords

  • Accuracy
  • Calibration
  • Geomod
  • Model
  • Simulation
  • Validation