Skip to main content

Advertisement

Log in

Understanding global sea levels: past, present and future

  • Special Feature: Original Article
  • Published:
Sustainability Science Aims and scope Submit manuscript

Abstract

The coastal zone has changed profoundly during the 20th century and, as a result, society is becoming increasingly vulnerable to the impact of sea-level rise and variability. This demands improved understanding to facilitate appropriate planning to minimise potential losses. With this in mind, the World Climate Research Programme organised a workshop (held in June 2006) to document current understanding and to identify research and observations required to reduce current uncertainties associated with sea-level rise and variability. While sea levels have varied by over 120 m during glacial/interglacial cycles, there has been little net rise over the past several millennia until the 19th century and early 20th century, when geological and tide-gauge data indicate an increase in the rate of sea-level rise. Recent satellite-altimeter data and tide-gauge data have indicated that sea levels are now rising at over 3 mm year−1. The major contributions to 20th and 21st century sea-level rise are thought to be a result of ocean thermal expansion and the melting of glaciers and ice caps. Ice sheets are thought to have been a minor contributor to 20th century sea-level rise, but are potentially the largest contributor in the longer term. Sea levels are currently rising at the upper limit of the projections of the Third Assessment Report of the Intergovernmental Panel on Climate Change (TAR IPCC), and there is increasing concern of potentially large ice-sheet contributions during the 21st century and beyond, particularly if greenhouse gas emissions continue unabated. A suite of ongoing satellite and in situ observational activities need to be sustained and new activities supported. To the extent that we are able to sustain these observations, research programmes utilising the resulting data should be able to significantly improve our understanding and narrow projections of future sea-level rise and variability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

CryoSat-2:

Second cryospheric satellite

GCOS:

Global climate observing system

GFO:

GeoSat follow-on satellite

GLONASS:

Global orbiting navigation satellite system

GLOSS:

Global sea-level observing system

GNSS:

Global navigation satellite system

GOCE:

Gravity field and steady-state ocean circulation explorer satellite

GPS:

Global positioning system

GRACE:

Gravity recovery and climate experiment satellite

ICESat:

Ice, cloud and land elevation satellite

InSAR:

Interferometric synthetic aperture radar

SLR:

Satellite laser ranging

References

  • AchutaRao KM, Santer BD, Gleckler PJ, Taylor KE, Barnett TP, Gregory JM, Pierce DW, Stouffer RJ, Wigley TML (2007) Ocean temperature and heat content variability in the second half of the 20th century. Proc Natl Acad Sci 104:10768–10773

    Article  CAS  Google Scholar 

  • Alsdorf DE, Rodriguez E, Lettenmaier DP (2007) Measuring surface water from space. Rev Geophys 45:RG2002

    Article  Google Scholar 

  • Antonov JI, Levitus S, Boyer TP (2005) Thermosteric sea level rise, 1955–2003. Geophys Res Lett 32:L12602. doi:10.1029/2005GL023112

    Article  Google Scholar 

  • Beckley BD, Lemoine FG, Lutchke SB, Ray RD, Zelensky NP (2007) A reassessment of global and regional mean sea level trends from TOPEX and Jason-1 altimetry based on revised reference frame and orbits. Geophys Res Lett 34:L14608. doi:10.1029/2007GL030002

    Article  Google Scholar 

  • Bindoff NL, Willebrand J, Artale V, Cazenave A, Gregory J, Gulev JS, Hanawa K, Le Querre C, Levitus S, Shum CK, Talley LD, Unnikrishnan A (2007) Chapter 5: Observations: oceanic climate change and sea level. In: Solomon S, Qin D, Manning M, Chen Z, Marquis MC, Averyt K, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group 1 to the fourth assessment report of the intergovernmental panel on climate change. Intergovernmental panel on climate change, Cambridge University Press, Cambridge

  • Bird ECF (1993) Submerging coasts: the effects of a rising sea level on coastal environments. Wiley, Chichester

    Google Scholar 

  • Chen JL, Wilson CR, Tapley BD (2006) Satellite gravity measurements confirm accelerated melting of Greenland Ice Sheet. Science 313:1958–1960

    Article  CAS  Google Scholar 

  • Church JA, White NJ (2006) A 20th century acceleration in global sea-level rise. Geophys Res Lett 33:L01602. doi:10.1029/2005GL024826

    Article  Google Scholar 

  • Church JA, Gregory JM, Huybrechts P, Kuhn M, Lambeck K, Nhuan MT, Qin D, Woodworth PL (2001) Changes in sea level. In: Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden P, Dai X, Maskell K, Johnson CI (eds) Climate change 2001: the scientific basis. Contribution of working group 1 to the third assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

  • Church JA, White NJ, Coleman R, Lambeck K, Mitrovica JX (2004) Estimates of the regional distribution of sea level rise over the 1950–2000 period. J Clim 17:2609–2625

    Article  Google Scholar 

  • Church JA, White NJ, Arblaster JM (2005) Significant decadal-scale impact of volcanic eruptions on sea level and ocean heat content. Nature 438:74–77

    Article  CAS  Google Scholar 

  • Church JA, Hunter JR, McInnes KL, White NJ (2006) Sea-level rise around the Australian coastline and the changing frequency of extreme events. Aust Meteorol Mag 55:253–260

    Google Scholar 

  • Church J, Wilson S, Woodworth P, Aarup T (2007) Understanding sea level rise and variability. Meeting report. EOS Trans Am Geophys Union 88:43

    Article  Google Scholar 

  • Cogley JG (2005) Mass and energy balances of glaciers and ice sheets. In: Anderson MG (eds) Encyclopedia of hydrological sciences, vol 4. Wiley, Hoboken, New Jersey, pp 2555–2573

  • Davis JL, Mitrovica JX (1996) Glacial isostatic adjustment and the anomalous tide gauge record of eastern North America. Nature 379:331–333

    Article  CAS  Google Scholar 

  • Davis CH, Li Y, McConnell JR, Frey MM, Hanna E (2005) Snowfall-driven growth in East Antarctic Ice Sheet mitigates recent sea-level rise. Science 308:1898–1901

    Article  CAS  Google Scholar 

  • Domingues CM, Church JA, White NJ, Gleckler P, Wijffels SE, Barker PM, Dunn JR (2008) Improved ocean-warming estimates: implications for climate models and sea-level rise. Nature (submitted)

  • Donnelly JP, Cleary P, Newby P, Ettinger R (2004) Coupling instrumental and geological records of sea-level change: evidence from southern New England of an increase in the rate of sea-level rise in the late 19th century. Geophys Res Lett 31:L05203. doi:10.1029/2003GL018933

    Article  Google Scholar 

  • Dyurgerov MB, Meier MF (2005) Glaciers and the changing earth system: a 2004 snapshot. Institute of Arctic and Alpine Research, University of Colorado, Colorado, Occasional Paper no 58, 177 pp

  • Ekström G, Nettles M, Tsai VC (2006) Seasonality and increasing frequency of Greenland glacial earthquakes. Science 311:1756–1758

    Article  Google Scholar 

  • Emanuel KA (2005) Increasing destructiveness of tropical cyclones over the past 30 years. Nature 436:686–688

    Article  CAS  Google Scholar 

  • Ericson JP, Vörösmarty CJ, Dingman SL, Ward LG, Meybeck M (2006) Effective sea-level rise and deltas: causes of change and human dimension implications. Global Planet Change 50:63–82

    Article  Google Scholar 

  • Fairbanks RG (1989) A 17,000-year glacio-eustatic sea level record: influence of glacial melting rates on the Younger Dryas event and deep-ocean circulation. Nature 342:637–642

    Article  Google Scholar 

  • Gehrels WR, Kirby JR, Prokoph A, Newnham RM, Achterberg EP, Evans H, Black S, Scott DB (2005) Onset of recent rapid sea-level rise in the western Atlantic Ocean. Quat Sci Rev 24:2083–2100

    Article  Google Scholar 

  • Gehrels WR, Marshall WA, Gehrels MJ, Larsen G, Kirby JR, Eiríksson J, Heinemeier J, Shimmield T (2006) Rapid sea-level rise in the North Atlantic Ocean since the first half of the nineteenth century. Holocene 16:949–965

    Article  Google Scholar 

  • Gille ST (2008) Decadal-scale temperature trends in the southern hemisphere ocean. J Clim (submitted)

  • Gilson J, Roemmich D, Cornuelle B, Fu L-L (1998) Relationship of TOPEX/Poseidon altimetric height to steric height and circulation in the North Pacific. J Geophys Res 103:27947–27965

    Article  Google Scholar 

  • Gleckler PJ, Wigley TML, Santer BD, Gregory JM, AchutaRao KM, Taylor KE (2006a) Volcanoes and climate: Krakatoa’s signature persists in the ocean. Nature 439:675

    Article  CAS  Google Scholar 

  • Gleckler PJ, AchutaRao KM, Gregory JM, Santer BD, Taylor KE, Wigley TML (2006b) Krakatoa lives: the effect of volcanic eruptions on ocean heat content and thermal expansion. Geophys Res Lett 33:L17702. doi:10.1029/2006GL026771

    Article  Google Scholar 

  • Gouretski V, Koltermann KP (2007) How much is the ocean really warming? Geophys Res Lett 34:L01610. doi:10.1029/2006GL027834

    Article  Google Scholar 

  • Graumann A, Houson T, Lawrimore J, Levinson D, Lott N, McCown S, Stephens S, Wuertz D (2005) Hurricane Katrina: a climatological perspective. NOAA Technical Report no 2005-01, Asheville

  • Gregory JM, Huybrechts P (2006) Ice-sheet contributions to future sea-level change. Phil Trans Roy Soc A 364:1709–1731

    Article  CAS  Google Scholar 

  • Gregory JM, Lowe JA, Tett SFB (2006) Simulated global-mean sea level changes over the last half-millennium. J Clim 19:4576–4591. doi:10.1175/JCLI3881.1

    Article  Google Scholar 

  • Guinehut S, Le Traon P-Y, Larnicol G (2006) What can we learn from global altimetry/hydrography comparisons? Geophys Res Lett 33:L10604. doi:10.1029/2005GL025551

    Article  Google Scholar 

  • Hansen JE (2007) Scientific reticence and sea level rise. Environ Res Lett 2:1–6

    Article  Google Scholar 

  • Holgate SJ, Woodworth PL (2004) Evidence for enhanced coastal sea level rise during the 1990s. Geophys Res Lett 31:L07305. doi:10.1029/2004GL019626

    Article  Google Scholar 

  • Holgate SJ, Jevrejeva S, Woodworth PL, Brewer S (2007) Comment on “A semi-empirical approach to projecting future sea-level rise.” Science 317:1866

    Article  CAS  Google Scholar 

  • Hunter J, Coleman R, Pugh D (2003) The sea level at Port Arthur, Tasmania, from 1841 to the present. Geophys Res Lett 30:1401. doi:10.1029/2002GL016813

    Article  Google Scholar 

  • Huybrechts P, de Wolde J (1999) Dynamic response of the Greenland and Antarctic ice sheets to multiple-century climatic warming. J Clim 12:2169–2188

    Article  Google Scholar 

  • IPCC (2001) In: McCarthy JJ, Canziani OF, Leary NA, Dokken DJ, White KS (eds) Climate change 2001: impacts, adaptation and vulnerability. Cambridge University Press, Cambridge

  • IPCC (2007) In: Solomon S, Qin D, Manning M, Chen Z, Marquis MC, Averyt K, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group 1 to the fourth assessment report of the intergovernmental panel on climate change. Intergovernmental panel on climate change, Cambridge University Press, Cambridge

  • Ishii M, Kimoto M, Sakamoto K, Iwasaki S-I (2006) Steric sea level changes estimated from historical ocean subsurface temperature and salinity analyses. J Oceanogr 62:155–170

    Article  Google Scholar 

  • Jevrejeva S, Grinsted A, Moore JC, Holgate SJ (2006) Nonlinear trends and multiyear cycles in sea level records. J Geophys Res 111:C09012. doi:10.1029/2005JC003229

    Article  Google Scholar 

  • Joughin I, Rignot E, Rosanova CE, Lucchitta BK, Bohlander J (2003) Timing of recent accelerations of Pine Island Glacier, Antarctica. Geophy Res Lett 30:1706. doi:10.1029/2003GL017609

    Article  Google Scholar 

  • Kaser G, Cogley JG, Dyurgerov MB, Meier MF, Ohmura A (2006) Mass balance of glaciers and ice caps: consensus estimates for 1961–2004. Geophys Res Lett 33:L19501. doi:10.1029/2006GL027511

    Article  Google Scholar 

  • Krabill WB, Hanna E, Huybrechts P, Abdalati W, Cappelen J, Csatho B, Frederick E, Manizade S, Martin C, Sonntag J, Swift R, Thomas R, Yungel J (2004) Greenland ice sheet: increased coastal thinning. Geophys Res Lett 31:L24402. doi:10.1029/2004GL021533

    Article  Google Scholar 

  • Lambeck K (2002) Sea level change from mid Holocene to recent time: an Australian example with global implications. In: Ice sheets, sea level and the dynamic earth. Geodynamics series 29, American Geophysical Union, Washington, DC, pp 33–50

  • Lambeck K, Chappell J (2001) Sea level change through the last glacial cycle. Science 292:679–686

    Article  CAS  Google Scholar 

  • Lambeck K, Nakiboglu SM (1984) Recent global changes in sea level. Geophys Res Lett 11:959–961

    Article  Google Scholar 

  • Lambeck K, Yokoyama Y, Purcell T (2002) Into and out of the Last Glacial Maximum: sea-level change during Oxygen Isotope Stages 3 and 2. Quat Sci Rev 21(1):343–360

    Article  Google Scholar 

  • Lambeck K, Anzidei M, Antonioli F, Benini A, Esposito A (2004) Sea level in Roman time in the Central Mediterranean and implications for recent change. Earth Planet Sci Lett 224:563–575

    Article  CAS  Google Scholar 

  • Lemke P, Ren J, Alley R, Allison I, Carrasco J, Flato G, Fujii Y, Kaser G, Mote P, Thomas R, Zhang T (2007) Chapter 4: Observations: changes in snow, ice and frozen ground. In: Solomon S, Qin D, Manning M, Chen Z, Marquis MC, Averyt K, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group 1 to the fourth assessment report of the intergovernmental panel on climate change. Intergovernmental panel on climate change, Cambridge University Press, Cambridge

  • Luthcke SB, Zwally HJ, Abdalati W, Rowlands DD, Ray RD, Nerem RS, Lemoine FG, McCarthy JJ, Chinn DS (2006) Recent Greenland ice mass loss by drainage system from satellite gravity observations. Science 314:1286–1289

    Article  CAS  Google Scholar 

  • Lyman JM, Willis JK, Johnson GC (2006) Recent cooling of the upper ocean. Geophys Res Lett 33:L18604. doi:10.1029/2006GL027033

    Article  Google Scholar 

  • Meehl GA, Washington WM, Collins WD, Arblaster JM, Hu A, Buja LE, Strand WG, Teng H (2005) How much more global warming and sea level rise? Science 307:1769–1772

    Article  CAS  Google Scholar 

  • Meehl GA, Stocker TF, Collins W, Friedlingstein P, Gaye A, Gregory J, Kitoh A, Knutti R, Murphy J, Noda A, Raper S, Watterson I, Weaver A, Zhao ZC (2007) Global climate projections. In: Solomon S, Qin D, Manning M (eds) Climate change 2007: the physical science basis. Contribution of working group 1 to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

  • Meier MF, Dyurgerov MB, Rick UK, O’Neel S, Tad Pfeffer W, Anderson RS, Anderson SP, Glazovsky AF (2007) Glaciers dominate eustatic sea-level rise in the 21st century. Science 317:1064–1067

    Article  CAS  Google Scholar 

  • Milly PCD, Cazenave A, Gennero MC (2003) Contribution of climate-driven change in continental water storage to recent sea-level rise. Proc Natl Acad Sci 100:13158–13161

    Article  CAS  Google Scholar 

  • Mitrovica JX, Tamisiea M, Davis JL, Milne GA (2001) Recent mass balance of polar ice sheets inferred from patterns of global sea-level change. Nature 409:1026–1029

    Article  CAS  Google Scholar 

  • Monaghan AJ, Bromwich DH, Fogt RL, Wang S-H, Mayewski PA, Dixon DA, Ekaykin A, Frezzotti M, Goodwin I, Isaksson E, Kaspari SD, Morgan VI, Oerter H, Van Ommen TD, Van der Veen CJ, Wen J (2006) Insignificant change in Antarctic snowfall since the International Geophysical Year. Science 313:827–831

    Article  CAS  Google Scholar 

  • Murty TS, Flather RA (1994) Impact of storm surges in the Bay of Bengal. J Coastal Res 12:149–161

    Google Scholar 

  • Murty TS, Flather RA, Henry RF (1986) The storm surge problem in the Bay of Bengal. Prog Oceanogr 16:195–233

    Article  Google Scholar 

  • Ngo-Duc T, Laval K, Plocher J, Lombard A, Cazenave A (2005) Effects of land water storage on global mean sea level over the past half century. Geophys Res Lett 32:9704–9707

    Article  Google Scholar 

  • Nicholls RJ (1995) Coastal megacities and climate change. GeoJournal 37(3):369–379

    Article  Google Scholar 

  • Otto-Bliesner BL, Marshall SJ, Overpeck JT, Miller GH, Hu A; CAPE Last Interglacial Project members (2006) Simulating arctic climate warmth and icefield retreat in the last interglaciation. Science 311:1751–1753

    Article  CAS  Google Scholar 

  • Overpeck JT, Otto-Bliesner BL, Miller GH, Muhs DR, Alley RB, Kiehl JT (2006) Paleoclimatic evidence for future ice-sheet instability and rapid sea-level rise. Science 311:1747–1750

    Article  CAS  Google Scholar 

  • Peltier WR (1998) Postglacial variations in the level of the sea: implications for climate dynamics and solid-earth geophysics. Rev Geophys 36:603–689

    Article  Google Scholar 

  • Rahmstorf S (2007) A semi-empirical approach to projecting future sea-level rise. Science 315:368–370

    Article  CAS  Google Scholar 

  • Rahmstorf S, Cazenave A, Church JA, Hansen JE, Keeling RF, Parker DE, Somerville RCJ (2007) Recent climate observations compared to projections. Science 316:709. doi:10.1126/science.1136843

    Article  CAS  Google Scholar 

  • Ramillien G, Lombard A, Cazenave A, Ivins ER, Llubes M, Remy F, Biancale R (2006) Interannual variations of the mass balance of the Antarctica and Greenland ice sheets from GRACE. Global Planet Change 53:198–208

    Article  Google Scholar 

  • Rignot E, Kanagaratnam P (2006) Changes in the velocity structure of the Greenland Ice Sheet. Science 311:986–990

    Article  CAS  Google Scholar 

  • Rignot E, Casassa G, Gogineni P, Kraybill W, Rivera A, Thomas R (2004) Accelerated ice discharge from the Antarctic Peninsula following the collapse of Larsen B ice shelf. Geophys Res Lett 31:L18401. doi:10.1029/2004GL020697

    Article  Google Scholar 

  • Roemmich D, Gilson J, Davis R, Sutton P, Wijffels S, Riser S (2007) Decadal spinup of the South Pacific subtropical gyre. J Phys Oceanogr 37:162–173

    Article  Google Scholar 

  • Scambos TA, Bohlander JA, Shuman CA, Skvarca P (2004) Glacier acceleration and thinning after ice shelf collapse in the Larsen B embayment, Antarctica. Geophys Res Lett 31:L18402. doi:10.1029/2004GL020670

    Article  Google Scholar 

  • Small C, Nicholls RJ (2003) A global analysis of human settlement in coastal zones. J Coastal Res 19(3):584–599

    Google Scholar 

  • Stirling CH, Esat TM, Lambeck K, McCulloch MT (1998) Timing and duration of the Last Interglacial: evidence for a restricted interval of widespread coral reef growth. Earth Planet Sci Lett 160:745–762

    Article  CAS  Google Scholar 

  • Thomas R, Rignot E, Casassa G, Kanagaratnam P, Acuña C, Atkins T, Brecher H, Frederick E, Gogineni P, Krabill W, Manizade S, Ramamoorthy H, Rivera A, Russell R, Sonntag J, Swift R, Yungel J, Zwally J (2004) Accelerated sea-level rise from West Antarctica. Science 306:255–258

    Article  CAS  Google Scholar 

  • Thomas R, Frederick E, Krabill W, Manizade S, Martin C (2006) Progressive increase in ice loss from Greenland. Geophys Res Lett 33:L10503. doi:10.1029/2006GL026075

    Article  Google Scholar 

  • Velicogna I, Wahr J (2005) Greenland mass balance from GRACE. Geophys Res Lett 32:L18505. doi:10.1029/2005GL023955

    Article  Google Scholar 

  • Webster PJ, Holland GJ, Curry JA, Chang H-R (2005) Changes in tropical cyclone number, duration, and intensity in a warming environment. Science 309:1844–1846

    Article  CAS  Google Scholar 

  • White WB, Tai C-K (1995) Inferring interannual changes in global upper ocean heat storage from TOPEX altimetry. J Geophys Res 100:24943–24954. doi:10.1029/95JC02332

    Article  Google Scholar 

  • Wigley TML (1995) Global-mean temperature and sea level consequences of greenhouse gas concentration stabilization. Geophys Res Lett 22:45–48

    Article  Google Scholar 

  • Wigley TML (2005) The climate change commitment. Science 307:1766–1769

    Article  CAS  Google Scholar 

  • Wijffels SE, Willis JK, Domingues CM, Barker P, White NJ, Gronell A, Ridgway K, Church JA (2008) Changing eXpendable bathythermograph fall-rates and their impact on estimates of thermosteric sea level rise. J Clim (in press)

  • Willis JK, Roemmich D, Cornuelle B (2003) Combining altimetric height with broadscale profile data to estimate steric height, heat storage, subsurface temperature, and sea-surface temperature variability. J Geophys Res 108:3292. doi:10.1029/2002JC001755

    Article  Google Scholar 

  • Willis JK, Roemmich D, Cornuelle B (2004) Interannual variability in upper ocean heat content, temperature, and thermosteric expansion on global scales. J Geophys Res 109:C12036. doi: 10.1029/2003JC002260

    Article  Google Scholar 

  • Willis JK, Lyman JM, Johnson GC, Gilson J (2007) Correction to “Recent cooling of the upper ocean.” Geophys Res Lett 34:L16601. doi:10.1029/2007GL030323

    Article  Google Scholar 

  • Wolf J, Flather RA (2005) Modelling waves and surges during the 1953 storm. Philos Trans Roy Soc 363:1359–1375. doi:10.1098/rsta.2005.1572

    Article  CAS  Google Scholar 

  • Woodworth PL (1999) High waters at Liverpool since 1768: the UK’s longest sea level record. Geophys Res Lett 26(11):1589–1592

    Article  Google Scholar 

  • Woodworth PL, Blackman DL (2004) Evidence for systematic changes in extreme high waters since the mid-1970s. J Clim 17:1190–1197

    Article  Google Scholar 

  • Woodworth PL, Player R (2003) The permanent service for mean sea level: an update to the 21st century. J Coastal Res 19:287–295

    Google Scholar 

  • Woodworth PL, White NJ, Jevrejeva S, Holgate S, Church JA, Gehrels R (2008) Evidence for the recent accelerations of sea level on multi-decade and century timescales. Int J Climatol (submitted)

  • Zwally JH, Abdalati W, Herring T, Larson K, Saba J, Steffen K (2002) Surface melt-induced acceleration of Greenland ice-sheet flow. Science 297:218–222

    Article  CAS  Google Scholar 

  • Zwally JH, Giovinetto MB, Li J, Cornejo HG, Beckley MA, Brenner AC, Saba JL, Yi D (2005) Mass changes of the Greenland and Antarctic ice sheets and shelves and contributions to sea-level rise: 1992–2002. J Glaciol 51:509–527

    Article  Google Scholar 

Download references

Acknowledgments

This paper is a contribution to the CSIRO Climate Change Research Program and the CSIRO Wealth from Oceans Flagship and was supported by the Australian Government’s Cooperative Research Centres Programme through the Antarctic Climate and Ecosystems Cooperative Research Centre. JAC, NJW and JRH were partly funded by the Australian Climate Change Science Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John A. Church.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Church, J.A., White, N.J., Aarup, T. et al. Understanding global sea levels: past, present and future. Sustain Sci 3, 9–22 (2008). https://doi.org/10.1007/s11625-008-0042-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11625-008-0042-4

Keywords

Navigation