Advertisement

Nicolas Buchmann, Marian Margraf

Gewährleistung langfristiger Sicherheit für Breeder-Dokumente durch Biometrie und Blockchain-Technologie

Zusammenfassung

Im Gegensatz zu elektronischen Reisedokumenten (z.B. ePässe) erfolgt die Standardisierung von Breeder-Dokumenten (z.B. Geburtsurkunden) hinsichtlich der Harmonisierung von Inhalten und enthaltenen Sicherheitsmerkmalen schleppend. Da Breeder-Dokumente als Identitätsnachweis verwendet werden können und die Beantragung elektronischer Reisedokumente ermöglichen, stellen sie das schwächste Glied im Identitätslebenszyklus dar und sind eine Sicherheitslücke für das Identitätsmanagement. In diesem Artikel stellen wir einen kosteneffizienten Weg vor, die langfristige Sicherheit von Breeder-Dokumenten durch den Einsatz von Biometrie und Blockchain-Technologie zu erhöhen.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Literatur

  1. 1] .

    C. Busch, B. Yang, U. Seidel, O. Henniger, M. Butt, C. Rathgeb, J. Hermans, G. Schumacher, J. Loeschner, E. Springmann, U. Rabeler, und A. Wolf, “FIDELITY project – Trustworthy lifecycle management for public documents, White Paper, http://www.fidelity-project.eu/media/download_pictures/WP_FIDELITY_EC_1.0-RC.pdf ,” 2015.

  2. 2] .

    ORIGINS consortium, “ORIGINS project, http://www.origins-project.eu,” 2017.

  3. 3.

    European Committee for Standardization, CEN Workshop 84 on a ’Self-Sovereign Identifier(s) for Personal Data Ownership and Usage Control’ (CEN WS ISAEN), Std., 2016.

  4. 4.

    European Committee for Standardization, CEN/TC 224/WG19 – Personal identification and related personal devices with secure element, systems, operations and privacy in a multi sectorial environment – Breeder Documents, Std., 2017.

  5. 5.

    S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system, http://bitcoin.org/bitcoin.pdf,” 2008.

  6. 6.

    A. Narayanan, J. Bonneau, E. Felten, A. Miller, und S. Goldfeder, Bitcoin and Cryptocurrency Technologies: A Comprehensive Introduction. Princeton, NJ, USA: Princeton University Press, 2016.

  7. 7.

    CoinMarketCap, “Cryptocurrency market capitalizations https://coinmarketcap.com/,” Sept. 2019.

  8. 8.

    A. K. Jain, A. Ross, und S. Prabhakar, “An introduction to biometric recognition,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 14, no. 1, pp. 4–20, 2004.

  9. 9.

    S. P. Fenker, E. Ortiz, und K. W. Bowyer, “Template aging phenomenon in iris recognition,” IEEE Access, vol. 1, pp. 266–274, 2013.

  10. 10.

    S. Yoon und A. K. Jain, “Longitudinal study of fingerprint recognition,” Proceedings of the National Academy of Sciences, vol. 112, no. 28, pp. 8555–8560, 2015.

  11. 11.

    P. Grother, J. R. Matey, E. Tabassi, G. Quinn, und M. Chumakov, “IREX VI: temporal stability of iris recognition accuracy,” NIST, Tech. Rep., interagency Report 7948, 2013.

  12. 12.

    Y. Koda, T. Higuchi, und A. K. Jain, “Advances in capturing child fingerprints: A high resolution cmos image sensor with sldr method,” in Int’l Conf. of the Biometrics Special Interest Group (BIOSIG), 2016, pp. 1–4.

  13. 13.

    ISO/IEC IS 19794:2011. Information Technology – Biometric Data Interchange Format – Part 4: Finger image data, Part 6: Iris image data, Int’l Organization for Standardization and Int’l Electrotechnical Committee, 2011.

  14. 14.

    ICAO, Doc 9303 – Machine Readable Travel Documents – Part 9: Deployment of Biometric Identification and Electronic Storage of Data in eMRTDs, 7th ed., International Civil Aviation Organization (ICAO), 2015.

  15. 15.

    W. Funk, M. Arnold, C. Busch, und A. Munde, “Evaluation of image compression algorithms for fingerprint and face recognition systems,” in 6th Systems, Man Cybernetics Information Assurance Workshop (SMC-IAW’06), 2005, pp. 72–78

  16. 16.

    J. Daugman und C. Downing, “Effect of severe image compression on iris recognition performance,” IEEE Trans. Inf. Forensics and Sec., vol. 3, pp. 52–61, 2008.

  17. 17.

    FVC-onGoing: on-line evaluation of fingerprint recognition algorithms, “Fingerprint verification Competition – 2002,” retrieved March, 2017. [Online]. Available: http://bias.csr.unibo.it/fvc2002/

  18. 18.

    Indian Institute of Technology Delhi, “IIT Delhi Iris Database,” retrieved March, 2017. [Online]. Available: http://www4.comp.polyu.edu.hk/~csajaykr/IITD/Database_Iris.htm

  19. 19.

    N. Buchmann, C. Rathgeb, J. Wagner, C. Busch, und H. Baier, “A preliminary study on the feasibility of storing fingerprint and iris image data in 2d-barcodes,” in Int’l Conf. of the Biometrics Special Interest Group (BIOSIG), 2016.

  20. 20.

    Federal Information Processing Standards Publication (FIPS PUB), FIPS PUB 186-4: Digital Signature Standard (DSS), 2013.

  21. 21.

    NIST: National Institute of Standards and Technology, Recommended elliptic curves for federal government use, 1999.

  22. 22.

    P. W. Shor, “Algorithms for quantum computation: Discrete logarithms and factoring,” in Proceedings of the 35th Annual Symposium on Foundations of Computer Science, ser. SFCS ’94. Washington, DC, USA: IEEE Computer Society, 1994, pp. 124–134

  23. 23.

    J. Buchmann, E. Dahmen, und A. Hülsing, XMSS – A Practical Forward Secure Signature Scheme Based on Minimal Security Assumptions. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 117–129

  24. 24.

    D. J. Bernstein, D. Hopwood, A. Hülsing, T. Lange, R. Niederhagen, L. Papachristodoulou, M. Schneider, P. Schwabe, und Z. Wilcox- O’Hearn, SPHINCS: Practical Stateless Hash-Based Signatures. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015, pp. 368–397

  25. 25.

    ICAO, Doc 9303 – Machine Readable Travel Documents – Part 11: Security Mechanisms for MRTDs, 7th ed., International Civil Aviation Organization (ICAO), 2015.

  26. 26.

    Federal Information Processing Standards Publication (FIPS PUB), FIPS PUB 180-2: Secure Hash Standard, 2002.

  27. 27.

    L. K. Grover, “A fast quantum mechanical algorithm for database search,” in Proceedings of the Twenty-eighth Annual ACM Symposium on Theory of Computing, ser. STOC ’96. New York, NY, USA: ACM, 1996, pp. 212–219

  28. 28.

    S. jen Chang, R. Perlner, W. E. Burr, M. S. Turan, J. M. Kelsey, S. Paul, L. E. Bassham, S. jen Chang, R. Perlner, W. E. Burr, M. S. Turan, J. M. Kelsey, S. Paul, L. E. Bassham, R. M. Blank, und A. Secretary, “Third-Round Report of the SHA-3 Cryptographic Hash Algorithm Competition,” 2012.

  29. 29.

    S. Popov, “The tangle, https://www.iota.org/research/academic-papers,” 2018.

  30. 30.

    N. Buchmann, C. Rathgeb, H. Baier, C. Busch, und M. Margraf, “Enhancing breeder document long-term security using blockchain technology,” in COMPSAC (2). IEEE Computer Society, 2017, pp. 744–748.

  31. 31.

    O. Delgado-Mohatar, J. Fiérrez, R. Tolosana, und R. Vera-Rodrı́guez, “Blockchain and Biometrics: A first look into opportunities and challenges,” in BLOCKCHAIN, ser. Advances in Intelligent Systems and Computing, vol. 1010. Springer, 2019, pp. 169–177.

  32. 32.

    O. Delgado-Mohatar, J. Fiérrez, R. Tolosana, und R. Vera-Rodrı́guez, “Biometric template storage with Blockchain: A first look into cost and performance tradeoffs,” CVPR Workshop on Biometrics, 2019.

Download references

Author information

Correspondence to Prof. Dr. Marian Margraf.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Margraf, M., Buchmann, N. Gewährleistung langfristiger Sicherheit für Breeder-Dokumente durch Biometrie und Blockchain-Technologie . Datenschutz Datensich 44, 32–37 (2020) doi:10.1007/s11623-019-1218-z

Download citation