Marta Gomez-Barrero, Jascha Kolberg, Christoph Busch

Erkennung von Präsentationsangriffen auf Fingerabdruck Systemen

Aktueller Stand und Herausforderungen

Zusammenfassung

Ein erhöhter Bedarf an Personenauthentifizierung führte in den letzten Jahren zu einem breiten Einsatz biometrischer Erkennungssysteme. Mit vermehrtem Einsatz insbesondere von unbeaufsichtigten biometrischen Systemen kamen jedoch verstärkt Sicherheitsbedenken auf. Darunter stellen Präsentationsangriffe (PAs, d.h. Versuche, sich mit einem Replikat einer biometrischen Charakteristik oder Präsentationsangriffsinstrument in das System einzuloggen) eine ernsthafte Bedrohung für die Sicherheit des Systems dar: Jede Person könnte schließlich einen Gummifinger oder Gesichtsmaske herstellen oder bestellen, um sich als eine andere Person auszugeben. Die Biometrie-Community unternimmt daher erhebliche Anstrengungen, um automatische Mechanismen zur Präsentations-Angriffs- Detektierung (PAD) zu entwickeln. In diesem Artikel wird der Stand der PAD Technik sowohl für herkömmliche Fingerabdrucksensoren als auch für die neuesten Ansätze diskutiert.

This is a preview of subscription content, log in to check access.

Literatur

  1. 1.

    N. Ratha, J. Connell and R. Bolle, “Enhancing Security and Privacy in Biometrics-based Authentication Systems”, IBM Systems Journal, Vol. 40, 2001

    Article  Google Scholar 

  2. 2.

    ISO/IEC 30107-1. Information Technology – Biometric presentation attack detection – Part 1: General Framework, 2016

  3. 3] .

    Handbook of Biometric Anti-Spoofing: Presentation Attack Detecion, Eds. S. Marcel, M. S. Nixon, J. Fierrez and N. Evans, Springer, 2019

  4. 4] .

    L. Ghiani, D. A. Yambay, V. Mura, G. L. Marcialis et al., “Review of the Fingerprint Liveness Detection ({LivDet}) competition series: 2009 to 2015”, Image and Vision Computing, vol. 58, pp. 110-128, 2017

    Article  Google Scholar 

  5. 5] .

    V. Mura, G. Orrù, R. Casula, A. Sibiriu et al., “LivDet 2017 Fingerprint Liveness Detection Competition”, in Proc. Proc. Int. Conf. on Biometrics (ICB), 2018

  6. 6] .

    G. Orrù, R. Casula, P. Tuveri, C. Bazzoni, et al., “LivDet in Action-Fingerprint Liveness Detection Competition”, arXiv preprint arXiv:1905.00639, 2019

  7. 7] .

    J. Galbally and M. Gomez-Barrero, “Presentation Attack Detection in Iris Recognition”, in Iris and Periocular Biometrics, Eds. C. Busch and C. Rathgeb, IET, 2017

  8. 8] .

    C. Sousedik and C. Busch, “Presentation Attack Detection Methods for Fingerprint Recognition Systems: A Survey”, IET Biometrics, vol. 3, no. 1, pp. 1-15, 2014

    Article  Google Scholar 

  9. 9] .

    E. Marasco and A. Ross, “A Survey on Antispoofing Schemes for Fingerprint Recognition Systems”, ACM Computing Surveys, vol. 47, no. 2, pp. 1-36, 2015

    Article  Google Scholar 

  10. 10] .

    J. Galbally, S. Marcel and J. Fierrez, “Biometric antispoofing methods: A survey in face recognition”, IEEE Access, vol. 2, pp. 1530-1552, 2014

    MATH  Article  Google Scholar 

  11. 11] .

    R. Raghavendra, M. Avinash, S. Marcel and C. Busch, “Finger Vein Liveness Detection Using Motion Magnification”, in Proc. Int. Conf. on Biometrics Theory, Applications and Systems (BTAS), pp. 1-7, 2015

  12. 12] .

    I. Goodfellow, Y. Bengio and A. Courville, “Deep learning”, MIT Press, 2016

  13. 13] .

    S.J. Pan and Q. Yang, “A Survey on Transfer Learning”, IEEE Trans. on Knowledge and Data Engineering, vol. 22, no. 10, pp. 1345-1359, 2010

    Article  Google Scholar 

  14. 14.

    R.F. Nogueira, R.A. Lotufo, and R.C. Machado, “Fingerprint Liveness Detection Using Convolutional Neural Networks”, IEEE Trans. on Information Forensics and Security, vol. 11, no. 6, pp. 1206-1213, 2016

    Article  Google Scholar 

  15. 15] .

    H. U. Jang, H. Y. Choi, D. Kim, J. Son and H. K. Lee, “Fingerprint Spoof Detection Using Contrast Enhancement and Convolutional Neural Networks”, in Proc. Int. Conf. on Information Science and Applications, pp. 331—338, 2017

  16. 16] .

    S. Kim, B. Park, B. S. Song and S. Yang, “Deep belief network based statistical feature learning for fingerprint liveness detection”, Pattern Recognition Letters, vol. 77, pp. 58-65, 2016

    Article  Google Scholar 

  17. 17] .

    A. Toosi, S. Cumani, and A. Bottino, “CNN Patch-Based Voting for Fingerprint Liveness Detection”, in Proc. Int. Joint Conf. on Computational Intelligence, 2017

  18. 18] .

    G. B. Souza, D. Santos, R. G. Pires, A. N. Marana and J. P. Papa, “Deep boltzmann machines for robust fingerprint spoofing attack detection”, in Proc. Int. Joint Conf. on Neural Networks, 2017

  19. 19] .

    T. Chugh, K. Cao, A. K. and Jain, “Fingerprint Spoof Buster: Use of Minutiae-Centered Patches”, IEEE Trans. on Information Forensics and Security, vol. 13, no. 9, pp. 2190-2202, 2018

    Article  Google Scholar 

  20. 20] .

    O. Kanich, M. Drahansky and M. Mezl, „Use of creative materials for fingerprint spoofs“, in Proc. Int. Workshop on Biometrics and Forensics (WIFS), 2018

  21. 21] .

    R. Tolosana, M. Gomez-Barrero, C. Busch and J. Ortega-Garcia, “Biometric Presentation Attack Detection: Beyond the Visible Spectrum”, IEEE Trans. On Information Forensics and Security, 2019

  22. 22] .

    M. Gomez-Barrero, J. Kolberg and C. Busch, „Multi-Modal Fingerprint Presentation Attack Detection: Looking at the Surface and the Inside“, in Proc. Int. Conf. On Biometrics (ICB), 2019

  23. 23] .

    P. Keilbach, J. Kolberg, M. Gomez-Barrero and C. Busch, „Fingerprint Presentation Attack Detection using Laser Speckle Contrast Imaging“, in Proc. Int. Conf. of the Biometrics Special Interest Group (BIOSIG), 2018

  24. 24] .

    M. Hussein, L. Spinoulas, F. Xiong and W. Abd-Almageed, “Fingerprint Presentation Attack Detection Using A Novel Multi-Spectral Capture Device and Patch-Based Convolutional Neural Networks”, in Proc. Int. Workshop on Information Forensics and Security (WIFS), 2018

  25. 25] .

    ISO/IEC 30107-3. Information Technology – Biometric presentation attack detection – Part 3: Testing and Reporting, 2017

  26. 26] .

    D. Menotti, G. Chiachia, A. Pinto, W.R. Schwartz, H. Pedrini, A. X. Falcao, and A. Rocha, “Deep representations for iris, face, and fingerprint spoofing detection”, IEEE Trans. on Information Forensics and Security, vol. 10, no. 4., pp. 864-879, 2015

    Article  Google Scholar 

  27. 27] .

    E. Marasco, P. Wild and B. Cukic, “Robust and interoperable fingerprint spoof detection via convolutional neural networks”, in Proc. Int. Conf. on Technologies for Homeland Security (HST), 2016

  28. 28] .

    C. Yuan, X. Li, Q. Wu, J. Li and X. Sun, “Fingerprint liveness detection from different fingerprint materials using convolutional neural network and principal component analysis”, Computers, Materials & Continua, vol. 53, no.4, pp. 357-372, 2017

    Google Scholar 

  29. 29] .

    C. Wang, K. Li, Z. Wu and Q. Zhao, „A DCNN based fingerprint liveness detection algorithm with voting strategy“, in Proc. Chinese Conf. on Biometric Recognition (CCBR), pp. 241-249, 2015

  30. 30] .

    E. Park, W. Kim, Q. Li, J. Kim and H. Kim, „Fingerprint liveness detection using CNN features of random sample patches“, in Proc. Int. Conf. of the Biometrics Special Interest Group (BIOSIG), 2016

  31. 31] .

    G. B. Souza, D. Santos, R. G. Pires, A. N. Marana and J. P. Papa, “Deep Boltzmann machines for robust fingerprint spoofing attack detection”, in Proc. Int. Joint Conf. on Neural Networks (IJCNN), pp. 1863-1870, 2017

  32. 32] .

    F. Pala and B. Bhanu, “On the accuracy and robustness of deep triplet embedding for fingerprint liveness detection”, in Proc. Int. Conf. on Image Processing (ICIP), pp. 116-120, 2017

  33. 33] .

    E. Park, X. Cui, W. Kim, J. Liu and H. Kim, “Patch-based Fake Fingerprint Detection Using a Fully Convolutional Neural Network with a Small Number of Parameters and an Optimal Threshold”, arXiv:1803.07817, 2018

  34. 34] .

    A. Toosi, A. Bottino, S. Cumani, P. Negri and P. L. Sottile, “Feature Fusion for Fingerprint Liveness Detection: a Comparative Study”, IEEE Access, vol. 5, pp. 23695-23709, 2017

    Article  Google Scholar 

  35. 35] .

    R. K. Rowe, K. A. Nixon P. W. and Butler, “Multispectral Fingerprint Image Acquisition”, in Advances in Biometrics: Sensors, Algorithms and Systems, 2008

  36. 36] .

    M. Gomez-Barrero and C. Busch, “Multi-Spectral Convolutional Neural Networks for Biometric Presentation Attack Detection”, in Proc. Norwegian Information Security Conference (NISK), 2019

  37. 37] .

    T. Chugh and A. K. Jain, “OCT Fingerprints: Resilience to Presentation Attacks”, arXiv preprint arXiV:1908.00102, 2019

  38. 38] .

    T. Chugh and A. Jain, “Fingerprint Presentation Attack Detection: Generalization and Efficiency”, in Proc. Int. Conf. on Biometrics (ICB), 2019

  39. 39] .

    J. Engelsma and A. Jain, “Generalizing Fingerprint Spoof Detector: Learning a One-Class Classifier”, in Proc. Int. Conf. on Biometrics (ICB), 2019

  40. 40] .

    R. Gajawada, A. Popli, T. Chugh, A. Namboodiri and A. Jain, “Universal Material Translator: Towards Spoof Fingerprint Generalization”, in Proc. Int. Conf. on Biometrics (ICB), 2019

  41. 41] .

    L. J. Gonzalez-Soler, M. Gomez-Barrero, L. Chang, A. Perez-Suarez, J. Hernandez-Palancar and C. Busch, “Fingerprint presentation attack detection based on local features encoding for unknown attacks”, arXiv:1908.10163, 2019

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Marta Gomez-Barrero.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gomez-Barrero, M., Kolberg, J. & Busch, C. Erkennung von Präsentationsangriffen auf Fingerabdruck Systemen . Datenschutz Datensich 44, 26–31 (2020). https://doi.org/10.1007/s11623-019-1217-0

Download citation