Advertisement

Algorithmic Risk Assessment als Medium des Rechts

Medientechnische Entwicklung und institutionelle Verschiebungen aus Sicht einer Techniksoziologie des Rechts
  • Peter MüllerEmail author
  • Nikolaus Pöchhacker
Hauptbeiträge
  • 42 Downloads

Zusammenfassung

In diesem Beitrag stellen wir die Frage nach den praktischen und institutionellen Konsequenzen rechtsintrinsischer Digitalisierung am Beispiel von Risk Assessment Software an US-amerikanischen Gerichtshöfen aus theoretisch konzeptioneller und programmatischer Perspektive. Dazu werden Debatten um Recidivism Risk Assessment Sentencing Decision Support Systems (SDSS), wie etwa COMPAS, betrachtet sowie ihre Kerninhalte und diskursive Lücken identifiziert. Diese Softwaresysteme finden in den USA an County Courts Einsatz, um Strafmaß und Bewährungsoptionen in Strafrechtsverhandlungen zu eruieren. Durch die Auseinandersetzung mit den technischen Funktionsprinzipien solcher Software soll deren Bedeutung für die bestehenden Strukturen und Praxen judikativer Institutionen von einem technik- wie rechtssoziologischen, sozialtheoretischen Standpunkt aus beleuchtet werden. Dieser Art lassen sich drei wesentliche Verschiebungen in der US-amerikanischen Judikative identifizieren: (1) wie statistische Populationen, Modelle und Verfahren die Wissensproduktion und Problemwahrnehmung beeinflussen; (2) wie Risk Assessment Softwares als proprietäres Produkt die inter-institutionellen Grenzen zwischen Recht und Ökonomie, Strafrecht und Strafvollzug verwischen; (3) wie der Einsatz der Software intrainstitutionell auf die gerichtliche und außergerichtliche Expertise und performative Herstellung des bürgerlichen (Recht‑)Subjekts einwirkt. Diese Verschiebungen erscheinen perspektivisch aus einer Techniksoziologie des Rechts, die die Produktion von Wissen, Technologie, Rechtspraxen und -institutionen gleichermaßen und symmetrisch in den Blick nimmt. Nur unter diesen Voraussetzungen lassen sich rechtsintrinsische Technologien in ihren Bedingungen und Konsequenzen angemessen erfassen.

Schlüsselwörter

Legal Tech Recht Risk Assessment Techniksoziologie des Rechts Algorithmen 

Algorithmic Risk Assessment as Medium of the Law

Developments in legal media and institutional shifts from the perspective of a sociology of legal technology

Abstract

With this contribution, we develop a theoretical perspective on the practical and institutional consequences of the digitization of law using the example of risk assessment software employed in US courts. Our article is based on the ongoing journalistic and scientific debates about recidivism risk assessment sentencing decision support systems (SDSS), such as COMPAS, which are being used in US county courts for criminal law issues to determine parole, custody and/or sentences. We summarize and highlight central contents and identify missing discourse positions in those debates. The basic technological concept of recidivism risk assessment SDSS is also taken into account. From there, we argue that three shifts have appeared in the US judiciary system: (1) statistical populations, models and methods shape knowledge production and the subsequent rise of new or additional discursive sensitivities and controversies; (2) risk assessment SDSS are blurring inter-institutional boundaries between law and economy, punitive justice and penitentiary; (3) risk assessment SDSS cause intra-institutional shifts, affecting the performativity of punitive judiciary and its practices of law and civic subjectivation. Thereby, this article is oriented towards a sociology of legal technology, analytically bringing together perspectives on the production of knowledge, technology, legal practices and legal institutions. Only, as we argue, by consequently thinking of the sociology of law together with the sociology of technology can the social phenomenon of legal-tech be understood adequately.

Keywords

Legal tech law risk assessment sociology of legal technology algorithms 

Literatur

  1. Alarid, Leanne F., und Carlos D. Montemayor. 2010. Attorney perspectives and decisions on the presentence investigation report. A research note. Criminal Justice Policy Review 21(1):119–133.Google Scholar
  2. Amoore, Louise. 2008. Risk before justice. When the law contests its own suspension. Leiden Journal of International Law 21(4):847–861.Google Scholar
  3. Angwin, Julia, Jeff Larson, Surya Mattu, und Lauren Kirchner. 2016. Machine Bias. There’s software used across the country to predict future criminals. And it’s biased against blacks. https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing. Zugegriffen: 18. Sept. 2016.Google Scholar
  4. Beer, David. 2017. The social power of algorithms. Information, Communication & Society 20(1):1–13.Google Scholar
  5. Blumer, Herbert. 1954. What is wrong with social theory? American Sociological Review 19(1):3–10.Google Scholar
  6. Bonta, James, und Don A. Andrews. 2007. Risk-need-responsivity model for offender assessment and rehabilitation. Rehabilitation 6(1):1–22.Google Scholar
  7. Bonta, James, und Stephen J. Wormith. 2007. Risk and need assessment. In Developments in social work with offenders, Hrsg. G. McIvor, P. Raynor, 131–152. London, Philadelphia: Jessica Kingsley.Google Scholar
  8. Brennan, Tim, William Dieterich, und Beate Ehret. 2009. Evaluating the predictive validity of the compas risk and needs assessment system. Criminal Justice and Behavior 36(1):21–40.  https://doi.org/10.1177/0093854808326545.Google Scholar
  9. Brickell, Julia L., und Peter J. Pizzi. 2015. Towards a synthesis of judicial perspectives on technology-assisted review. Defense Counsel Journal 82(3):309–320.Google Scholar
  10. Burrell, Jenna. 2016. How the machine ‚thinks‘. Understanding opacity in machine learning algorithms. Big Data & Society 3(1):2053951715622512.  https://doi.org/10.2139/ssrn.2660674.Google Scholar
  11. Cole, Simon. 2001. Suspect identities. A history of fingerprinting and criminal identification. Cambridge, London: Harvard University Press.Google Scholar
  12. Corbett-Davies, Sam, Emma Pierson, Avi Feller, und Sharad Goel. 2016. A computer program used for bail and sentencing decisions was labeled biased against blacks. It’s actually not that clear. https://www.washingtonpost.com/news/monkey-cage/wp/2016/10/17/can-an-algorithm-be-racist-our-analysis-is-more-cautious-than-propublicas. Zugegriffen: 21. Mai 2017.Google Scholar
  13. Deleuze, Gilles, und Felix Guattari. 1992. Tausend Plateaus. Kapitalismus und Schizophrenie. Berlin: Merve.Google Scholar
  14. Durkheim, Émile. 1986. Über die Teilung der sozialen Arbeit. Frankfurt am Main: Suhrkamp.Google Scholar
  15. Egbert, Simon. 2017. Siegeszug der Algorithmen? Predictive Policing im deutschsprachigen Raum. http://www.bpb.de/apuz/253603/siegeszug-der-algorithmen-predictive-policing-im-deutschsprachigen-raum. Zugegriffen: 30. Okt. 2017.Google Scholar
  16. Ehrlich, Eugen. 1936. Fundamental Principles of the Sociology of Law. Cambridge, MA: Harvard University Press.Google Scholar
  17. Eidenmüller, Horst. 1998. Effizienz als Rechtsprinzip. Tübingen: Mohr Siebeck.Google Scholar
  18. Ewald, Francois. 1990. Norms, Discipline, and the Law. Representations 30:138–161.Google Scholar
  19. Flores, Antony W., Kristin Bechtel, und Christopher T. Lowenkamp. 2016. False positives, false negatives, and false analyses. A rejoinder to machine bias. There’s software used across the country to predict future criminals. And it’s biased against blacks. Federal Probation 80(2):38–46.Google Scholar
  20. Foucault, Michel. 1981. Archäologie des Wissens. Frankfurt am Main: Suhrkamp.Google Scholar
  21. Foucault, Michel. 2015. Sicherheit, Territorium, Bevölkerung. Geschichte der Gouvernementalität I. Vorlesungen am Collège de France 1977/1978. Frankfurt am Main: Suhrkamp.Google Scholar
  22. Garfinkel, Harold. 1984. Studies in Ethnomethodology. Englewood Cliffs, New Jersey: Prentice-Hall.Google Scholar
  23. Gieryn, Thomas F. 1999. Cultural boundaries of science. Credibility on the line. Chicago, London: University of Chicago Press.Google Scholar
  24. Habermas, Jürgen. 1992. Faktizität und Geltung. Frankfurt am Main: Suhrkamp.Google Scholar
  25. Harcourt, Bernard E. 2015. Risk as a proxy for race. The dangers of risk assessment. Federal Sentencing Reporter 27(4):237–243.Google Scholar
  26. Henderson, Howard, und Holly A. Miller. 2013. The (twice) failure of the wisconsin risk need assessment in a sample of probationers. Criminal Justice Policy Review 24(2):199–221.Google Scholar
  27. Hilgartner, Steven. 2000. Science on stage: expert advice as public drama. Stanford, California: Stanford University Press.Google Scholar
  28. Hoc, Jean-Michel. 2010. From human-machine-interaction to human-machine-cooperation. Ergonomics 43(7):833–843.Google Scholar
  29. Introna, Lucas, und David Wood. 2002. Picturing algorithmic surveillance. The politics of facial recognition systems. Surveillance & Society 2(2):3. http://library.queensu.ca/ojs/index.php/surveillance-and-society/article/view/3373.Google Scholar
  30. Irwin, Alan, und Mike Michael. 2003. Ethno-epistemic assemblages. heterogeneity and relationality in scientific citizenship. In Science, social theory and public knowledge, Hrsg. Alan Irwin, Mike Michael, 111–136. Berkshire, Philadelphia: Open University Press.Google Scholar
  31. Jasanoff, Sheila. 1997. Science at the bar: law, science, and technology in america. Cambridge, MA: Harvard University Press. Reprint edition.Google Scholar
  32. Jasanoff, Sheila. 2001. Ordering life: law and the normalization of biotechnology. Politeia 17(2):34–50.Google Scholar
  33. Jasanoff, Sheila. 2004. States of knowledge. The co-production of science and the social order. London: Routledge.Google Scholar
  34. Jasanoff, Sheila. 2005. Law’s knowledge: science for justice in legal settings. American Journal of Public Health 95(S 1):49–58.Google Scholar
  35. Jasanoff, Sheila. 2008. Making order. Law and science in action. In The handbook of science and technology studies, 3. Aufl., Hrsg. Edward J. Hackett, Olga Amsterdamska, Michael Lynch, und Judy Wajcman, 761–786. Cambridge, London: MIT Press.Google Scholar
  36. Kelsen, Hans. 1960. Reine Rechtslehre. Mit einem Anhang. Das Problem der Gerechtigkeit, 2. Aufl., Wien: Franz Deuticke.Google Scholar
  37. Kleinberg, Jon, Sendhil Mullainathan, und Manish Raghavan. 2016. Inherent Trade-Offs in the Fair Determination of Risk Scores. ArXiv: 1609.05807.Google Scholar
  38. Larson, Jeff, Julia Angwin, und Terry Parris. 2016a. Breaking the black box. How machines learn to be racist. https://www.propublica.org/article/breaking-the-black-box-how-machines-learn-to-be-racist. Zugegriffen: 19. Okt. 2016.Google Scholar
  39. Larson, J., S. Mattu, L. Kirchner, und J. Angwin. 2016b. How we analyzed the COMPAS recidivism algorithm. https://www.propublica.org/article/how-we-analyzed-the-compas-recidivism-algorithm. Zugegriffen: 3. Aug. 2018.Google Scholar
  40. Latour, Bruno. 1990. Technology is society made durable. The Sociological Review 38(S 1):103–131.Google Scholar
  41. Latour, Bruno. 2002. La Fabrique du droit. Une ethnographie du Conseil d’État. Paris: La Découverte.Google Scholar
  42. Latour, Bruno. 2005. Reassembling the Social. An Introduction to Actor-Network-Theory. Oxford: Oxford University Press.Google Scholar
  43. Latour, Bruno. 2014. Existenzweisen: Eine Anthropologie der Modernen. Berlin: Suhrkamp.Google Scholar
  44. Legal Information Institute. 2011. 18 U.S. Code § 3553—Imposition of a sentence. In: U.S. Code. https://www.law.cornell.edu/uscode/text/18/3553. Zugegriffen: 13. März 2015.Google Scholar
  45. Lessig, Lawrence. 1999. Code: and other laws of cyberspace. New York: Basic Books.Google Scholar
  46. Lessig, Lawrence. 2006. Code: Version 2.0. New York: Basic Books.Google Scholar
  47. Llewellyn, Karl. 1931. Some realism about realism. Responding to dean pound. Harvard Law Review 44:1222–1256.Google Scholar
  48. Luhmann, Niklas. 1983. Legitimation durch Verfahren, 10. Aufl., Frankfurt am Main: Suhrkamp.Google Scholar
  49. Luhmann, Niklas. 1987. Soziale Systeme: Grundriß einer allgemeinen Theorie. Frankfurt am Main: Suhrkamp.Google Scholar
  50. Luhmann, Niklas. 1995. Das Recht der Gesellschaft. Frankfurt am Main: Suhrkamp.Google Scholar
  51. Lynch, Michael. 2013. Science, truth, and forensic cultures: the exceptional legal status of DNA evidence. Studies in History and Philosophy of Biological and Biomedical Sciences 44(1):60–70.Google Scholar
  52. Marcus, George E. 1995. Technoscientific Imaginaries. Conversations, profiles, and memoirs. Chicago: University of Chicago Press.Google Scholar
  53. Mnookin, Jennifer L. 2001. Fingerprinting evidence in an age of DNA profiling. Brooklyn Law Review 67(1):13–70.Google Scholar
  54. Musik, Christoph. 2011. The thinking eye is only half the story. High-level semantic video surveillance. Information Polity 16(4):339–353.Google Scholar
  55. Nissan, Ephraim. 2017. Digital technologies and artificial intelligence’s present and foreseeable impact on lawyering, judging, policing and law enforcement. AI & Society 32(3):441–464.Google Scholar
  56. Northpointe. 2012. COMPAS risk & need assessment system. Selected questions posed by inquiring agencies. http://www.northpointeinc.com/files/downloads/FAQ_Document.pdf. Zugegriffen: 1. Aug. 2018.Google Scholar
  57. Pasquale, Frank. 2015. The black box society: the secret algorithms that control money and information. Cambridge, MA: Harvard University Press.Google Scholar
  58. Perry, Walter L., Brian McInnis, Carter C. Price, Susan C. Smith, und John S. Hollywood. 2013. Predictive policing. The role of crime forecasting in law enforcement operations. Santa Monica: RAND Corporation.Google Scholar
  59. Rawls, Anne W. 2012. Durkheim’s theory of modernity. Self-regulating practices as constitutive orders of social and moral facts. Journal of Classical Sociology 12(3–4):479–512.  https://doi.org/10.1177/1468795X12454476.Google Scholar
  60. Ruhl, J.B., und Daniel M. Katz. 2015. Measuring, monitoring, and managing legal complexity. Iowa Law Review 101:191.Google Scholar
  61. Schild, Uri J., und John Zeleznikow. 2008. Comparing sentencing decision support systems for judges and lawyers. Journal of Decision Systems 17(4):523–552.Google Scholar
  62. Shapiro, Aaron. 2017. Reform predictive policing. Nature News 541(7638):458.Google Scholar
  63. Skeem, Jennifer L., und Christopher Lowenkamp. 2016. Risk, race, & recidivism. Predictive bias and disparate impact. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2687339. Zugegriffen: 13. Mai 2018.Google Scholar
  64. State Court Administrative Office. 2016. Presentence Investigation Report. In: Manual for District Court Probation Officers, 41–86. http://courts.mi.gov/Administration/SCAO/Resources/Documents/Publications/Manuals/prbofc/prb.pdf. Zugegriffen: 25. Mai 2017.Google Scholar
  65. Steffensmeier, Darrell, Jeffrey Ulmer, und John Kramer. 1998. The interaction of race, gender, and age in criminal sentencing: The punishment cost of being young, Black, and male. Criminology 36(4):763–797.Google Scholar
  66. Subramanian, Ram, Rebecka Moreno, und Sharyn Broomhead. 2014. Recalibrating Justice. A Review of 2013 State Sentencing and Corrections Trends. New York: Vera Institute of Justice. http://www.vera.org/sites/default/files/resources/downloads/state-sentencing-and-corrections-trends-2013.pdf. Zugegriffen: 22.03.2019.Google Scholar
  67. Taylor, Charles. 2004. Modern social imaginaries. Duke University Press: Durham, London.Google Scholar
  68. Vismann, Cornelia. 2011. Medien der Rechtsprechung. Frankfurt am Main: Fischer.Google Scholar
  69. Wulf, Christoph. 2003. Ritual und Recht. Performatives Handeln und mimetisches Wissen. In Körper und Recht. Anthropologische Dimensionen der Rechtsphilosophie, Hrsg. Ludger Schwarte, Christoph Wulf, 29–45. München: Wilhelm Fink.Google Scholar
  70. Yates, Christopher P., und Louise E. Herrick. 2001. Going on record: the perils of discussing criminal history during the presentence interview. Federal Sentencing Reporter 13:330–332.Google Scholar

Copyright information

© Österreichische Gesellschaft für Soziologie 2019

Authors and Affiliations

  1. 1.Technische Universität MünchenMünchenDeutschland

Personalised recommendations