Advertisement

SYNSEG – Eine Methode zur syntaxgeleiteten Segmentierung von Kodiereinheiten für die Analyse von Gruppenprozessen

  • Michaela KolbeEmail author
  • Margarete Boos
  • Alexandra Stein
  • Micha Strack
Hauptbeiträge
  • 271 Downloads

Zusammenfassung

Die Beobachtung von Gruppenprozessen ermöglicht Aufschlüsse darüber, was erfolgreiche Gruppen anders machen als weniger erfolgreiche Gruppen. Typischerweise werden dafür Beobachtungsdaten zunächst transkribiert oder in eine Kodiersoftware überführt und anschließend Einheiten segmentiert, denen Inhaltskategorien aus Kategoriensystemen zugeordnet werden. Während es für die Transkription und Kodierung etablierte Verfahren gibt, bleibt die Segmentierung der Kodiereinheiten häufig der Intuition der Kodierenden überlassen. Dies schränkt die Reliabilität des Kodierens ein. Es fehlen standardisierte und überprüfte Vorgehensweisen für die Bildung von Kodiereinheiten, die für gruppenpsychologische Fragestellungen geeignet sind. Ziel der hier vorgestellten Methode zur systematischen Bildung von Kodiereinheiten ist es, ein transparentes, sparsames und allgemein anwendbares Vorgehen zur Erhöhung der Reliabilität von Kodierungen zu ermöglichen. Wir stellen SYNSEG vor – eine Methode zur syntaxgeleiteten Segmentierung von Kodiereinheiten anhand von zehn Regeln, die auf der deutschen Grammatik basieren. Wir diskutieren sowohl eine Realitätsprüfung als auch mögliche Anwendungen von SYNSEG in der Gruppenforschung und -beratung.

Schlüsselwörter

Gruppe Prozess Beobachtung Kodiereinheit Segmentierung Syntax Reliabilität 

SYNSEG – A method for syntax-based segmentation of coding units for the analysis of group processes

Abstract

Observing group processes allows for obtaining insights into what successful groups do differently than less successful groups. In doing so, observational data is typically transcribed or integrated into coding software, coding units are identified, and coding systems are applied to code these units with regard to the respective content. While there are systems available for transcribing and coding observational group data, the segmentation of coding units is mostly left to the coders’ intuition. Standardized and tested procedures for identifying coding units are not available for group research, limiting the reliability of coding group data. We introduce a method which aims at systematically identifying and segmenting coding units to enhance coding reliability. SYNSEG – syntax-based segmentation of coding units – suggests ten rules to segment coding units based on German grammar. To test for reliability, two coders applied SYNSEG for segmenting a 60-minute group discussion. A normalised Levensthein Distance of nD = 0,19 indicated satisfying coder agreement. We discuss the relevance and applicability of SYNSEG in applied group research.

Keywords

Group Process Observation Coding unit Segmentation Syntax Reliability 

Supplementary material

11612_2016_345_MOESM1_ESM.doc (352 kb)
SYNSEG-Manual: Syntaxgeleitete Segmentierung von Kodiereinheiten

Literatur

  1. Abbott, A., & Tsay, A. (2000). Sequence analysis and optimal matching methods in sociology. Sociological Methods and Research, 29, 3–33. doi: 10.1177/0049124100029001001.CrossRefGoogle Scholar
  2. Bakeman, R. (2000). Behavioral observation and coding. In H. T. Reis & C. M. Judd (Hrsg.), Handbook of research methods in social and personality psychology (S. 138–159). New York: Cambridge University Press.Google Scholar
  3. Bakeman, R., & Gottman, J. M. (1986). Observing interaction: An introduction to sequential analysis. Cambridge: Cambridge University Press.Google Scholar
  4. Bakeman, R., & Quera, V. (2011). Sequential analysis and observational methods for the behavioral sciences. New York: Cambridge University Press.CrossRefGoogle Scholar
  5. Bakeman, R., Quera, V., & Gnisci, A. (2009). Observer agreement for timed-event sequential data: A comparison of time-based and event-based algorithms. Behavior Research Methods, 41(1), 137–147. doi: 10.3758/brm.41.1.137.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bilandzic, H., Koschel, F., & Scheufele, B. (2001). Theoretisch-heuristische Segmentierung im Prozeß der empiriegeleiteten Kategorienbildung. In W. Wirth & E. Lauf (Hrsg.), Inhaltsanalyse (S. 98–116). Köln: Herbert von Halem.Google Scholar
  7. Boos, M. (1996). Entscheidungsfindung in Gruppen: Eine Prozessanalyse. Bern: Huber.Google Scholar
  8. Boos, M., & Cornelius, C. (2001). Bedeutung und Erfassung konversationaler Kohärenz in direkter und computervermittelter Kommunikation. In F. W. Hesse & H. F. Friedrich (Hrsg.), Partizipation und Interaktion im virtuellen Seminar (S. 55–80). Münster: Waxmann.Google Scholar
  9. Brauner, E. (2006). Kodierung transaktiver Wissensprozesse (TRAWIS). Zeitschrift für Sozialpsychologie, 37, 99–112. doi: 10.1024/0044-3514.37.2.99.CrossRefGoogle Scholar
  10. Brüderl, J., & Scherer, S. (2004). Methoden zur Analyse von Sequenzdaten. Kölner Zeitschrift für Soziologie und Sozialpsychologie, Sonderheft, 44, 330–347.Google Scholar
  11. Bünting, K.-D., & Bergenholtz, H. (1979). Einführung in die Syntax. Königstein: Athenäum.Google Scholar
  12. Burtscher, M. J., Kolbe, M., Wacker, J., & Manser, T. (2011). Interactions of team mental models and monitoring behaviors predict team performance in simulated anesthesia inductions. Journal of Experimental Psychology: Applied, 17, 257–269. doi: 10.1037/a0025148.PubMedGoogle Scholar
  13. Conroy, R. (2001). Spatial navigation in immersive virtual environments. London.: University College London.Google Scholar
  14. Dittmar, N. (2002). Transkription. Ein Leitfaden mit Aufgaben für Studenten, Forscher und Laien. Opladen: Leske + Budrich.Google Scholar
  15. Eppich, W., Mullan, P. C., Brett-Fleegler, M., & Cheng, A. (2016). “Let’s talk about it”: translating lessons from healthcare simulation to clinical event debriefings and clinical coaching conversations. Clinical Pediatric Emergency Medicine, 17, 200–211. doi: 10.1016/j.cpem.2016.07.001.CrossRefGoogle Scholar
  16. Faßnacht, G. (1995). Systematische Verhaltensbeobachtung (2. Aufl.). München: Reinhardt.Google Scholar
  17. Fernandez Castelao, E., Boos, M., Ringer, C., Eich, C., & Russo, S. G. (2015). Effect of CRM team leader training on team performance and leadership behavior in simulated cardiac arrest scenarios: a prospective, randomized, controlled study. BMC Medical Education, 15(1), 1–8. doi: 10.1186/s12909-015-0389-z.CrossRefGoogle Scholar
  18. Früh, W. (2001). Kategorienexplikation bei der Inhaltsanalyse. Basiswissengeleitete offene Kategorienfindung (BoK). In W. Wirth & E. Lauf (Hrsg.), Inhaltsanalyse (S. 117–139). Köln: Herbert von Halem.Google Scholar
  19. Früh, W. (2004). Inhaltsanalyse. Konstanz: UVK.Google Scholar
  20. Futoran, G. C., Kelly, J. R., & McGrath, J. E. (1989). TEMPO: A time-based system for analysis of group interaction process. Basic and Applied Social Psychology, 10, 211–232. doi: 10.1207/s15324834basp1003_2.CrossRefGoogle Scholar
  21. Grote, G., Kolbe, M., Zala-Mezö, E., Bienefeld-Seall, N., & Künzle, B. (2010). Adaptive coordination and heedfulness make better cockpit crews. Ergonomics, 52, 211–228. doi: 10.1080/00140130903248819.CrossRefGoogle Scholar
  22. Guetzkow, H. (1950). Unitizing and categorizing problems in coding qualitative data. Journal of Clinical Psychology, 6, 47–58.CrossRefGoogle Scholar
  23. Hackman, J. R. (2012). From causes to conditions in group research. Journal of Organizational Behavior, 3, 428–444. doi: 10.1002/job.1774.CrossRefGoogle Scholar
  24. Heeringa, W. (2004). Measuring dialect pronunciation differences using Levenshtein Distance. Dissertation thesis. Groningen: University of Groningen.Google Scholar
  25. Holsti, O. R. (1969). Content analysis for the social sciences and humanities. Reading: Addison-Wesley.Google Scholar
  26. Hooff, J. A. R. A. M. van (1982). Categories and sequences of behavior: Methods of description and analysis. In K. R. Scherer & P. Ekman (Hrsg.), Handbook of methods in nonverbal behavior research (S. 362–439). Cambridge: Cambridge University Press.Google Scholar
  27. Howitt, D., & Cramer, D. (2005). Introduction to research methods in psychology. Harlow: Pearson Education.Google Scholar
  28. Kauffeld, S. (2007). Jammern oder Lösungsexploration? Eine sequenzanalytische Betrachtung des Interaktionsprozesses in betrieblichen Gruppen bei der Bewältigung von Optimierungsaufgaben. Zeitschrift für Arbeits- und Organisationspsychologie, 51, 55–67. doi: 10.1026/0932-4089.51.2.55.CrossRefGoogle Scholar
  29. Kauffeld, S., & Meyers, R. A. (2009). Complaint and solution-oriented circles in work groups. European Journal of Work and Organizational Psychology, 18, 267–294. doi: 10.1080/13594320701693209.CrossRefGoogle Scholar
  30. Keating, N. L., Landrum, M. B., Lamont, E. B., Bozeman, S. R., Shulman, L. N., & McNeil, B. J. (2013). Tumor boards and the quality of cancer care. Journal of the National Cancer Institute, 105, 113–121. doi: 10.1093/jnci/djs502.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Klonek, F. E., Quera, V., & Kauffeld, S. (2015). Coding interactions in Motivational Interviewing with computer-software: What are the advantages for process researchers? Computers in Human Behavior, 44, 284–292. doi: 10.1016/j.chb.2014.10.034.CrossRefGoogle Scholar
  32. Klonek, F. E., Quera, V., Burba, M., & Kauffeld, S. (2016). Group interactions and time: Using sequential analysis to study group dynamics in project meetings. Group Dynamics: Theory, Research, and Practice, 20, 209–222. doi: 10.1037/gdn0000052.CrossRefGoogle Scholar
  33. Kolbe, M., Strack, M., Stein, A., & Boos, M. (2011). Effective coordination in human group decision making: MICRO-CO. A micro-analytical taxonomy for analysing explicit coordination mechanisms in decision-making groups. In M. Boos, M. Kolbe, P. Kappeler & T. Ellwart (Hrsg.), Coordination in human and primate groups (S. 199–219). Heidelberg: Springer.CrossRefGoogle Scholar
  34. Kolbe, M., Burtscher, M., & Manser, T. (2013). Co-ACT – A framework for observing coordination behavior in acute care teams. BMJ Quality & Safety, 22, 596–605. doi: 10.1136/bmjqs-2012-001319.CrossRefGoogle Scholar
  35. Kolbe, M., Grote, G., Waller, M. J., Wacker, J., Grande, B., Burtscher, M., & Spahn, D. (2014). Monitoring and talking to the room: Autochthonous coordination patterns in team interaction and performance. Journal of Applied Psychology, 99, 1254–1267. doi: 10.1037/a0037877.CrossRefPubMedGoogle Scholar
  36. Kolbe, M., Grande, B., & Spahn, D. R. (2015). Briefing and debriefing during simulation-based training and beyond: Content, structure, attitude, and setting. Best Practice & Research Clinical Anaesthesiology, 29(1) doi: 10.1016/j.bpa.2015.01.002.Google Scholar
  37. Lehmann-Willenbrock, N., Allen, J. A., & Kauffeld, S. (2013). A sequential analysis of procedural meeting communication: How teams facilitate their meetings. Journal of Applied Communication Research, 41, 365–388. doi: 10.1080/00909882.2013.844847.CrossRefGoogle Scholar
  38. Lehmann-Willenbrock, N., Chiu, M. M., Lei, Z., & Kauffeld, S. (2016). Understanding positivity within dynamic team interactions: A statistical discourse analysis. Group & Organization Management doi: 10.1177/1059601116628720.Google Scholar
  39. Lei, Z., Waller, M. J., Hagen, J., & Kaplan, S. (2015). Team adaptiveness in dynamic contexts: Contextualizing the roles of interaction patterns and in-process planning. Group & Organization Management, 41, 491–525. doi: 10.1177/1059601115615246.CrossRefGoogle Scholar
  40. Levenshtein, V. I. (1966). Binary codes capable of correcting deletions, insertions and reversals. Soviet Physics-Doklady, 10, 707–710.Google Scholar
  41. Mangold, P. (2007). Interact. Unpublished manual. Mangold Software & Consulting.Google Scholar
  42. Manser, T., Howard, S. K., & Gaba, D. M. (2008). Adaptive coordination in cardiac anaesthesia: A study of situational changes in coordination patterns using a new observation system. Ergonomics, 51, 1153–1178. doi: 10.1080/00140130801961919.CrossRefPubMedGoogle Scholar
  43. Martin, P., & Bateson, P. (1993). Measuring behavior. An introductory guide (2. Aufl.). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  44. Mayring, P. (2003). Qualitative Inhaltsanalyse. Grundlagen und Techniken (8. Aufl.). Weinheim: UTB.Google Scholar
  45. McGrath, J. E., & Altermatt, T. W. (2002). Observation and analysis of group interaction over time: Some methodological and strategic choices. In M. A. Hogg & S. Tindale (Hrsg.), Blackwell handbook of social psychology: group processes (S. 525–556). Boston: Blackwell.Google Scholar
  46. Quera, V., Bakeman, R., & Gnisci, A. (2007). Observer agreement for event sequences: Methods and software for sequence alignment and reliability estimates. Behavior Research Methods, 39(1), 39–49. doi: 10.3758/bf03192842.CrossRefPubMedGoogle Scholar
  47. ResearchWare. (2013). HyperRESEARCH (Version 3.5.2). Randolph.Google Scholar
  48. Riethmüller, M., Fernandez Castelao, E., Eberhardt, D., Timmermann, A., & Boos, M. (2012). Adaptive coordination development in student anaesthesia teams: A longitudinal study. Ergonomics, 55(1), 55–68. doi: 10.1080/00140139.2011.636455.CrossRefPubMedGoogle Scholar
  49. Schermuly, C. C., Schröder, T., Nachtwei, J., & Scholl, W. (2010). Das Instrument zur Kodierung von Diskussionen (IKD). Zeitschrift für Arbeits- und Organisationspsychologie, 54, 149–170. doi: 10.1026/0932-4089/a000026.CrossRefGoogle Scholar
  50. Schmutz, J., Hoffman, F., Heimberg, E., & Manser, T. (2015). Effective coordination in medical emergency teams: The moderating role of task type. European Journal of Work and Organization Psychology, 24, 761–776. doi: 10.1080/1359432X.2015.1018184.CrossRefGoogle Scholar
  51. Seelandt, J. C., Tschan, F., Keller, S., Beldi, G., Jenni, N., Kurmann, A., Candinas, D., & Semmer, N. K. (2014). Assessing distractors and teamwork during surgery: developing an event-based method for direct observation. BMJ Quality & Safety, 23, 918–929. doi: 10.1136/bmjqs-2014-002860.CrossRefGoogle Scholar
  52. Seelandt, J., Kolbe, M., & Grande, B. (2015). Debriefings for enhancing team learning in acute care teams. 9th International Workshop on Behavioural Sciences Applied to Surgery and Acute Care Settings, Bonn, Oktober 2015.Google Scholar
  53. Selting, M., Auer, P., Barden, B., Bergmann, J., Couper-Kuhlen, E., Günthner, S., Meier, C., Quasthoff, U., Schlobinski, P., et al. (1998). Gesprächsanalytisches Transkriptionssystem (GAT). Linguistische Berichte, 173, 91–122.Google Scholar
  54. Sörensen, K. (2007). Distance measures based on the edit distance for permutation type representation. Heuristics, 13, 35–47. doi: 10.1007/s10732-006-9001-3.CrossRefGoogle Scholar
  55. Tschan, F., Semmer, N. K., Vetterli, M., Gurtner, A., Hunziker, S., & Marsch, S. U. (2011). Developing observational categories for group process research based on task and coordination-requirement analysis: Examples from research on medical emergency-driven teams. In M. Boos, M. Kolbe, P. Kappeler & T. Ellwart (Hrsg.), Coordination in human and primate groups (S. 93–118). Heidelberg: Springer.CrossRefGoogle Scholar
  56. Tschan, F., Seelandt, J. C., Keller, S., Semmer, N. K., Kurmann, A., Candinas, D., & Beldi, G. (2015). Impact of case-relevant and case-irrelevant communication within the surgical team on surgical-site infection. British Journal of Surgery, 102, 1718–1725. doi: 10.1002/bjs.9927.CrossRefPubMedGoogle Scholar
  57. Waller, M. J. (1999). The timing of adaptive group responses to nonroutine events. Academy of Management Journal, 42, 127–137. doi: 10.2307/257088.CrossRefGoogle Scholar
  58. Weingart, L. R. (1997). How did they do that? The ways and means of studying group process. Research in Organizational Behavior, 19, 189–239.Google Scholar
  59. Weiss, M., Kolbe, M., Grote, G., Spahn, D. R., & Grande, B. (2016). Why didn’t you say something? Using after-event reviews to affect voice behavior and hierarchy beliefs in multi-professional action teams. European Journal of Work and Organization Psychology doi: 10.1080/1359432X.2016.1208652.Google Scholar
  60. Wittenbaum, G. M., Hollingshead, A. B., Paulus, P. B., Hirokawa, R. Y., Ancona, D. G., Peterson, R. S., Jehn, K. A., & Yoon, K. (2004). The functional perspective as a lens for understanding groups. Small Group Research, 35, 17–43. doi: 10.1177/1046496403259459.CrossRefGoogle Scholar
  61. Woolley, A. W., Chabris, C. F., Pentland, A., Hashmi, N., & Malone, T. W. (2010). Evidence for a collective intelligence factor in the performance of human groups. Science, 330, 686–688. doi: 10.1126/science.1193147.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Fachmedien Wiesbaden 2016

Authors and Affiliations

  1. 1.SimulationszentrumUniversitätsspital ZürichZürichSchweiz
  2. 2.Georg-Elias-Müller-Institut für PsychologieGeorg-August-Universität GöttingenGöttingenDeutschland
  3. 3.MagdeburgDeutschland

Personalised recommendations