Skip to main content
Log in

Modélisation de la cavité pelvienne

Mechanical model of the pelvic cavity: development strategy

  • Mise Au Point / Update
  • Published:
Pelvi-périnéologie

Résumé

Le prolapsus urogénital affecte l’équilibre anatomique et mécanique de la statique pelvienne. Les hypothèses physiopathologiques sont nombreuses. Étant donné la complexité des systèmes biomécaniques en jeu, il est nécessaire de mettre au point et de développer des modèles informatiques. Ils constituent une simplification des systèmes étudiés et permettent de simuler et de prévoir leurs comportements face à des modifications de l’environnement. Le modèle simule des situations physiologiques, pathologiques ou thérapeutiques. Notre objectif est d’aboutir à une évaluation de la maladie et à une personnalisation thérapeutique des troubles de la statique pelvienne. Nous avons défini un premier cahier des charges représenté par les prérequis au développement du modèle pelvien. Cette méthodologie repose sur trois axes principaux et incontournables: l’élaboration d’un modèle géométrique, la caractérisation mécanique des tissus organiques et la réalisation de mesures de contraintes mécaniques in vivo. L’étude préliminaire de faisabilité du modèle de cavité pelvienne a permis initialement de poser les bases du modèle, les moyens à mettre en œuvre tant sur les plans humains que matériels. Le modèle mécanique de cavité pelvienne est en constante évolution. Son développement répond à une politique d’évaluation de nos pratiques. Le modèle sera un outil objectif supplémentaire d’évaluation de la maladie et des techniques de correction. Il permettra le développement d’innovations efficaces et sûres pour diagnostiquer, prendre en charge et traiter le prolapsus. Il est à l’heure actuelle non exploitable à ce titre, mais en devenir. Il reste à envisager les solutions pour lever les verrous technologiques à son développement.

Abstract

Pelvic organ prolapse is caused by the anatomical and mechanical dysfunction of the pelvic floor. Numerous hypotheses attempt to explain the cause of the condition. Because many biomechanical systems are involved, the creation of computer simulation models is necessary. Modelling not only simplifies the systems under study, but also makes it possible to simulate and forecast their behaviour in different environmental contexts. The aim of mechanical models of the pelvic cavity is to simulate physiological, pathological and therapeutic situations. We defined three lines of approach for evaluating a patient’s condition and determining an individualised treatment plan. First, we developed a geometrical model, then determined the mechanics of pelvic organ tissues. As a third step, we identified in vivo mechanical constraints by measuring intravaginal pressure. This mechanical model of the pelvic cavity is in ongoing development, advancing based on our expanding knowledge. The model will be used as a tool to assess the disorder accurately and test new, innovative techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Références

  1. Maher C, Baessler K, Glazener CM, et al. (2004) Surgical management of pelvic organ prolapse in women. Cochrane Database Syst Rev 4: CD004014

  2. Maher C, Baessler K (2006) Surgical management of anterior vaginal wall prolapse: an evidence-based literature review. Int Urogynecol J Pelvic Floor Dysfunct 17(2): 195–201

    Article  PubMed  Google Scholar 

  3. De Tayrac R, Gervaise A, Fernandez H (2002) Cystocele repair by the vaginal route with a tension-free sub-bladder prosthesis. J Gynecol Obstet Biol Reprod (Paris) 31(6):597–599

    Google Scholar 

  4. Ballanger P (2005) Surgery for genitourinary prolapse: prosthesis or no prosthesis? Ann Urol (Paris) 39(Suppl 5): S132–S136

    Google Scholar 

  5. Tai CL, Shih CH, Chen WP, et al. (2003) Finite element analysis of the cervicotrochanteric stemless femoral prosthesis. Clin Biomech (Bristol, Avon) 18(6): S53–S58

    Article  Google Scholar 

  6. Shim VB, Pitto RP, Streicher RM, et al. (2007) The use of sparse CT datasets for autogenerating accurate FE models of the femur and pelvis. J Biomech 40(1): 26–35

    Article  PubMed  Google Scholar 

  7. Paccini A, Tillier Y, Delotte J, et al. (2005) Contribution à la modélisation par éléments finis d’une opération chirurgicale sur l’utérus. In: Congrés français de mécanique Troye, 2005

  8. Haridas B, Hong H, Minoguchi R, et al. (2006) PelvicSim-a computational-experimental system for biomechanical evaluation of female pelvic floor organ disorders and associated minimally invasive interventions. Stud Health Technol Inform 119: 182–187

    PubMed  Google Scholar 

  9. Verhey J, Wisser J, Warfield S, et al. (2005) Non-rigid registration of a 3D ultrasound and MR images data set of the female pelvic floor using a biomechanical model. In: Biomedical engineering (in online)

  10. Anderson AE, Peters CL, Tuttle BD, et al. (2005) Subject-specific finite element model of the pelvis: development, validation and sensitivity studies. J Biomech Eng 127(3): 364–373

    Article  PubMed  Google Scholar 

  11. Crawford RP, Cann CE, Keaveny TM (2003) Finite element models predict in vitro vertebral body compressive strength better than quantitative computed tomography. Bone 33(4): 744–750

    Article  PubMed  Google Scholar 

  12. Marino G, Bignardi C, Pacca M, et al. (2006) Mechanical characteristics of the human bladder wall and application of the results in a finite elements model to study the pelvic floor. Minerva Urol Nephrol 58(2): 213–219

    CAS  Google Scholar 

  13. Fielding JR, Dumanli H, Schreyer AG, et al. (2000) MR-based three-dimensional modelling of the normal pelvic floor in women: quantification of muscle mass. Am J Roentgenol 174(3): 657–660

    CAS  Google Scholar 

  14. Hoyte L, Schierlitz L, Zou K, et al. (2001) Two-and 3-dimensional MRI comparison of levator ani structure, volume, and integrity in women with stress incontinence and prolapse. Am J Obstet Gynecol 185(1): 11–19

    Article  PubMed  CAS  Google Scholar 

  15. Janda S, van der Helm FC, de Blok SB (2003) Measuring morphological parameters of the pelvic floor for finite element modelling purposes. J Biomech 36(6): 749–757

    Article  PubMed  Google Scholar 

  16. Parikh M, Rasmussen M, Brubaker L, et al. (2004) Three dimensional virtual reality model of the normal female pelvic floor. Ann Biomed Eng 32(2): 292–296

    Article  PubMed  Google Scholar 

  17. Singh K, Jakab M, Reid WM, et al. (2003) Three-dimensional magnetic resonance imaging assessment of levator ani morphologic features in different grades of prolapse. Am J Obstet Gynecol 188(4): 910–915

    Article  PubMed  Google Scholar 

  18. Boukerrou M, Lambaudie E, Collinet P, et al. (2006) Objective analysis of mechanical resistance of tension-free devices. Eur J Obstet Gynecol Reprod Biol 124(2): 240–245

    Article  PubMed  Google Scholar 

  19. Cosson M, Debodinance P, Boukerrou M, et al. (2003) Mechanical properties of synthetic implants used in the repair of prolapse and urinary incontinence in women: which is the ideal material? Int Urogynecol J Pelvic Floor Dysfunct 14(3): 169–178 (discussion 178)

    Article  PubMed  Google Scholar 

  20. Walters MD (2003) The use and misuse of prosthetic materials in reconstructive pelvic surgery: does the evidence support our surgical practice? Int Urogynecol J 14: 365–366

    Article  Google Scholar 

  21. Huebner M, Hsu Y, Fenner D (2006) The use of graft materials in vaginal pelvic floor surgery. Int J Gynaecol Obstet 92: 279–288

    Article  PubMed  CAS  Google Scholar 

  22. Kennedy AM, Gilfeather MR, Woodward PJ (1999) MRI of the female pelvis. Semin Ultrasound CT MR 20(4): 214–230

    Article  PubMed  CAS  Google Scholar 

  23. Vial S, Gibon D, Vasseur C, et al. (2001) Volume delineation by fusion of fuzzy sets obtained from multiplanar tomographic images. IEEE Trans Med Imaging 20(12): 1362–1372

    Article  PubMed  CAS  Google Scholar 

  24. Lambaudie E, Dubois P, Géron C, et al. (2003) New method of intravaginal pressure measurement. ITBM-RBM 24(5–6): 254–263

    Article  Google Scholar 

  25. Fung Y (1993) Biomechanical properties of living tissues. New York: Springer Verlag

    Google Scholar 

  26. Li Z, Alonso JE, Kim JE, et al. (2006) Three-dimensional finite element models of the human pubic symphysis with viscohyperelastic soft tissues. Ann Biomed Eng 34(9): 1452–1462

    Article  PubMed  Google Scholar 

  27. Chen L, Hsu Y, Ashton-Miller JA, et al. (2006) Measurement of the pubic portion of the levator ani muscle in women with unilateral defects in 3-D models from MR images. Int J Gynaecol Obstet 92(3): 234–241

    Article  PubMed  CAS  Google Scholar 

  28. Boukerrou M, Lambaudie E, Dubois P, et al. (2004) Étude préliminaire d’un modèle mécanique de cavité vaginale. ITBM-RBM 25(1): 3–14

    Article  Google Scholar 

  29. Gousse AE, Barbaric ZL, Safir MH, et al. (2000) Dynamic half-Fourier acquisition, single shot turbo spin-echo magnetic resonance imaging for evaluating the female pelvis. J Urol 164(5): 1606–1613

    Article  PubMed  CAS  Google Scholar 

  30. Torricelli P, Pecchi A, Caruso Lombardi A, et al. (2002) Magnetic resonance imaging for evaluating functional disorders of female pelvic floor. Radiol Med 103(5–6): 488–500

    CAS  Google Scholar 

  31. Goh JT (2002) Biomechanical properties of prolapsed vaginal tissue in pre-and postmenopausal women. Int Urogynecol J Pelvic Floor Dysfunct 13(2): 76–79 (discussion 79)

    Article  PubMed  CAS  Google Scholar 

  32. Rubod C, Boukerrou M, Brieu M, et al. (2006) Experimental Protocol and biomechanical properties of vaginal tissue. J of Urol (accepté)

  33. Cosson M, Lambaudie E, Boukerrou M, et al. (2004) A biomechanical study of the strength of vaginal tissues. Results on 16 postmenopausal patients presenting with genital prolapse. Eur J Obstet Gynecol Reprod Biol 112(2): 201–205

    Article  PubMed  Google Scholar 

  34. Ettema GJ, Goh JT, Forwood MR (1998) A new method to measure elastic properties of plastic-viscoelastic connective tissue. Med Eng Phys 20(4): 308–314

    Article  PubMed  CAS  Google Scholar 

  35. Vereecken R (1987) Intravaginal pressure recordings as alternative to intrarectal pressure monitoring. Urgology 29: 225–226

    Article  CAS  Google Scholar 

  36. Peschers U, Fanger G, Schaer G, et al. (2001) Bladder neck mobility in continent nulliparous women. Br J Obstet Gynaecol 108: 320–324

    Article  CAS  Google Scholar 

  37. Coutty N, Lambaudie E, Boukerrou M, et al. (2006) A new device for in vivo measurement of intravaginal pressures. Biomat Res (en lecture)

  38. Cosson M, Boukerrou M, Lacaze S, et al. (2003) A study of pelvic ligament strength. Eur J Obstet Gynecol Reprod Biol 109(1): F80–F87

    Article  Google Scholar 

  39. Boukerrou M, Boulanger L, Rubod C, et al. (2006) Biomechanical properties study of synthetic mesh implanted in vivo. Eur J of Obstet Gynecol (accepté)

  40. Boukerrou M, Dedet B, Rubod C, et al. (2006) Tissue resistance of Tension free procedure. What about healing? J of Urol (en lecture)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Boukerrou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boukerrou, M., Rubod, C., Coutty, N. et al. Modélisation de la cavité pelvienne. Pelv Perineol 2, 33–41 (2007). https://doi.org/10.1007/s11608-007-0111-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11608-007-0111-7

Mots clés

Keywords

Navigation