Skip to main content
Log in

Propriétés pharmacologiques de l’oxybutynine sur la fonction vésicale chez la souris

Pharmacological effects of oxybutynin on bladder function in mice

  • Article Original / Original Article
  • Published:
Pelvi-périnéologie

Résumé

Les antagonistes muscariniques, comme l’oxybutynine, sont le principal traitement pharmacologique actuel pour l’incontinence urinaire par urgenturie. L’objectif de cette étude a été d’évaluer l’activité pharmacologique de l’oxybutynine sur la fonction vésicale chez la souris. Pour cela, nous avons développé des nouveaux modèles expérimentaux nous permettant d’étudier, in vitro, sa puissance antagoniste sur la vessie isolée et in vivo, son urosélectivité au regard des effets sur les glandes salivaires ainsi que ses effets sur le cycle mictionnel en utilisant la technique de cystomanométrie. L’ensemble des résultats présenté est en accord avec ceux publiés chez l’homme. Cette espèce apparaît être un modèle pertinent pour étudier la fonction vésicale.

Abstract

Muscarinic antagonists, such as oxybutynin, provide the most common pharmacological treatments for urge urinary incontinence. The aim of the present study is to evaluate the pharmacological effects of oxybutynin on bladder function in mice. We constructed new experimental models allowing us to study the in vitro antagonistic effects on strips of bladder detrusor smooth muscle, in vivo uroselectivity (effects on vesical pressure and salivary glands), and the effect on micturition cycles using cystometry. Overall, our results agree with previous results reported in studies of humans. Therefore, mice offer an appropriate model to study bladder function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Références

  1. Andersson KE, Arner A (2004) Urinary bladder contraction and relaxation: physiology and pathophysiology. Physiol Rev 84: 935–986

    Article  PubMed  CAS  Google Scholar 

  2. Yoshida M, Homma Y, Inadome A, et al. (2001) Agerelated changes in cholinergic and purinergic neurotrans-mission in human isolated bladder smooth muscles. Exp Gerontol 36: 99–109

    Article  PubMed  CAS  Google Scholar 

  3. Palea S, Artibani W, Ostardo E, et al. (1993) Evidence for purinergic neurotransmission in human urinary bladder affected by interstitial cystitis. J Urol 150: 2007–2012

    PubMed  CAS  Google Scholar 

  4. O’Reilly BA, Kosaka AH, Knight GF, et al. (2002) P2X receptors and their role in female idiopathic detrusor instability. J Urol 167: 157–164

    Article  PubMed  CAS  Google Scholar 

  5. Haab F, Amarenco G, Coloby P, et al. (2004) Terminologie des troubles fonctionnels du bas appareil urinaire: adaptation française de la terminologie de l’International Continence Society. Progrés en urologie 14: 1103–1111

    PubMed  Google Scholar 

  6. de Groat WC (1997) A neurologic basis for the overactive bladder. Urology 50: 36–52 (discussion, pp 53–6)

    Article  PubMed  Google Scholar 

  7. Brading AF (1997) A myogenic basis for the overactive bladder. Urology 50: 57–67

    Article  PubMed  CAS  Google Scholar 

  8. Herbison P, Hay-Smith J, Ellis G, et al. (2003) Effectiveness of anticholinergic drugs compared with placebo in the treatment of overactive bladder: systematic review. BMJ 326: 841–844

    Article  PubMed  CAS  Google Scholar 

  9. Yarker YE, Goa KL, Fitton A (1995) Oxybutynin. A review of its pharmacodynamic and pharmacokinetic properties, and its therapeutic use in detrusor instability. Drugs Aging 6: 243–262

    Article  PubMed  CAS  Google Scholar 

  10. Andersson KE, Yoshida M (2003) Antimuscarinics and the overactive detrusor-which is the main mechanism of action? Eur Urol 43: 1–5

    Article  PubMed  CAS  Google Scholar 

  11. Modiri AR, Alberts P, Gillberg PG (2002) Effect of muscarinic antagonists on micturition pressure measured by cystometry in normal, conscious rats. Urology 59: 963–968

    Article  PubMed  Google Scholar 

  12. Peterson JS, Hanson RC, Noronha-Blob L (1989) In vivo cystometrogram studies in urethane-anesthetized and conscious guinea pigs. J Pharmacol Methods 21: 231–241

    Article  PubMed  CAS  Google Scholar 

  13. Finney SM, Andersson KE, Gillespie JI, et al. (2006) Antimuscarinic drugs in detrusor overactive bladder syndrome: motor or sensory actions? BJU Int 98: 503–507

    Article  PubMed  CAS  Google Scholar 

  14. Mukerji G, Yiangou Y, Grogono J, et al. (2006) Localization of M2 and M3 muscarinic receptors in human bladder disorders and their clinical correlations. J Urol 176: 367–373

    Article  PubMed  CAS  Google Scholar 

  15. Angelico P, Velasco C, Guarneri L, et al. (2005) Urodynamic effects of oxybutynin and tolterodine in conscious and anesthetized rats under different cystometrographic conditions. BMC Pharmacol 5: 14

    Article  PubMed  CAS  Google Scholar 

  16. Abrams P, Andersson KE, Buccafusco JJ, et al. (2006) Muscarinic receptors: their distribution and function in body systems and the implications for treating overactive bladder. Br J Pharmacol 148: 565–578

    Article  PubMed  CAS  Google Scholar 

  17. Nakamura T, Matsui M, Uchida K, et al. (2004) M3 muscarinic acetylcholine receptor plays a critical role in parasympathetic control of salivation in mice. J Physiol 558: 561–575

    Article  PubMed  CAS  Google Scholar 

  18. Hegde SS (2006) Muscarinic receptors in the bladder: from basic research to therapeutics. Br J Pharmacol 147: S80–S87

    Article  PubMed  CAS  Google Scholar 

  19. Ohtake A, Ukai M, Hatanaka T, et al. (2004) In vitro and in vivo tissue selectivity profile of solifenacin succinate (YM905) for urinary bladder over salivary gland in rats. Eur J Pharmacol 492: 243–250

    Article  PubMed  CAS  Google Scholar 

  20. Palea S, Lluel P, Barras M, et al. (2004) Involvement of 5-hydroxytryptamine (HT)7 receptors in the 5-HT excitatory effects on the rat urinary bladder. BJU Int 94: 1125–1131

    Article  PubMed  CAS  Google Scholar 

  21. Lluel P, Barras M, Palea S (2002) Cholinergic and purinergic contribution to the micturition reflex in conscious rats with long-term bladder outlet obstruction. Neurourol Urodyn 21: 142–153

    Article  PubMed  Google Scholar 

  22. Pandita RK, Fujiwara M, Alm P, et al. (2000) Cystometric evaluation of bladder function in non-anesthetized mice with and without bladder outlet obstruction. J Urol 164: 1385–1389

    Article  PubMed  CAS  Google Scholar 

  23. Oki T, Sato S, Miyata K, et al. (2005) Muscarinic receptor binding, plasma concentration and inhibition of salivation after oral administration of a novel antimuscarinic agent, solifenacin succinate in mice. Br J Pharmacol 145: 219–227

    Article  PubMed  CAS  Google Scholar 

  24. Kobayashi S, Ikeda K, Miyata K (2004) Comparison of in vitro selectivity profiles of solifenacin succinate (YM905) and current antimuscarinic drugs in bladder and salivary glands: a Ca2+ mobilization study in monkey cells. Life Sci 74: 843–853

    Article  PubMed  CAS  Google Scholar 

  25. Nelson CP, Gupta P, Napier CM, et al. (2004) Functional selectivity of muscarinic receptor antagonists for inhibition of M3-mediated phosphoinositide responses in guinea pig urinary bladder and submandibular salivary gland. J Pharmacol Exp Ther 310: 1255–1265

    Article  PubMed  CAS  Google Scholar 

  26. Igawa Y, Zhang X, Nishizawa O, et al. (2004) Cystometric findings in mice lacking muscarinic M2 or M3 receptors. J Urol 172: 2460–2464

    Article  PubMed  CAS  Google Scholar 

  27. Deba A, Lluel P, Palea S (2006) Mesure simultanée de la salivation et de la pression intravésicale chez la souris anesthésiée: effets de l’oxybutynine. Pelv Perineol 1: 93–94

    Google Scholar 

  28. Matsuura S, Downie JW (2000) Effect of anesthetics on reflex micturition in the chronic cannula-implanted rat. Neurourol Urodyn 19: 87–99

    Article  PubMed  CAS  Google Scholar 

  29. Chess-Williams R, Chapple CR, Yamanishi T, et al. (2001) The minor population of M3-receptors mediate contraction of human detrusor muscle in vitro. J Auton Pharmacol 21: 243–248

    Article  PubMed  CAS  Google Scholar 

  30. De Laet K, De Wachter S, Wyndaele JJ (2006) Systemic oxybutynin decreases afferent activity of the pelvic nerve of the rat: new insights into the working mechanism of antimuscarinics. Neurourol Urodyn 25: 156–161

    Article  PubMed  CAS  Google Scholar 

  31. Kim Y, Yoshimura N, Masuda H, et al. (2005) Antimuscarinic agents exhibit local inhibitory effects on muscarinic receptors in bladder-afferent pathways. Urology 65: 238–242

    Article  PubMed  Google Scholar 

  32. de Groat WC (2004) The urothelium in overactive bladder: passive bystander or active participant? Urology 64: 7–11

    Article  PubMed  Google Scholar 

  33. Bassuk JA, Grady R, Mitchell M (2000) Review article: the molecular era of bladder research. Transgenic mice as experimental tools in the study of outlet obstruction. J Urol 164: 170–179

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Lluel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deba, A., Lluel, P. & Polea, S. Propriétés pharmacologiques de l’oxybutynine sur la fonction vésicale chez la souris. Pelv Perineol 2, 12–19 (2007). https://doi.org/10.1007/s11608-007-0108-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11608-007-0108-2

Mots clés

Keywords

Navigation