SymTrak-8 as a Brief Measure for Assessing Symptoms in Older Adults



Patient- and caregiver-reported 23-item SymTrak scales were validated for monitoring clinically actionable symptoms and impairments associated with multiple chronic conditions (MCCs) in older adults. Items capture physical and emotional symptoms and impairments in physical and cognitive functioning. An abbreviated SymTrak is desirable when response burden is a concern.


Develop and validate the 8-item SymTrak.

Design and Participants

Secondary analysis of SymTrak validation study; 600 participants (200 patient-caregiver dyads; 200 patients without an identified caregiver).

Main Measures

Demographic questions, SymTrak, and Health Utility Index Mark 3 (HUI3).

Key Results

SymTrak-8 demonstrated good fit to a one-factor model using confirmatory factor analysis (CFA). Concurrent criterion validity was supported by high standardized linear regression coefficients (STB) between baseline SymTrak-8 total score (independent variable) and baseline HUI3 preference-based overall HRQOL utility score (dependent variable; 0 = death, 1 = perfect health), after adjusting for demographics, comorbid conditions, and medications, with strength comparable to SymTrak-23 (STB = − 0.81 and − 0.84, respectively, for SymTrak-8 and SymTrak-23, when patient-reported; and − 0.60 and − 0.62, respectively, when caregiver-reported). Coefficient alpha (0.74; 0.76) and 24-h test–retest reliability (0.83; 0.87) were high for SymTrak-8 for patients and caregivers, respectively. The convergent correlation between brief and parent SymTrak scales was high (0.94). SymTrak-8 demonstrated approximate normality and a linear relationship with SymTrak-23 and HUI3. Importantly, a 3-month change in SymTrak-8 was sensitive to detecting the criterion (3-month reliable change categories; improved, stable, declined in HUI3 overall utility), with results comparable to SymTrak-23.


SymTrak-8 total score demonstrates internal reliably, test–retest reliability, criterion validity, and sensitivity to change that are comparable to SymTrak-23. Thus, patient- or caregiver-reported SymTrak-8 is a viable option for identifying and monitoring the aggregate effect of symptoms and functional impairments in patients with multimorbidity when response burden is a concern.

This is a preview of subscription content, access via your institution.

Fig. 1


  1. 1.

    Monahan PO, Kroenke K, Callahan CM, et al. Development and feasibility of SymTrak, a multi-domain tool for monitoring symptoms of older adults in primary care. J Gen Intern Med. 2019;34(6):915-922.

    PubMed  PubMed Central  Article  Google Scholar 

  2. 2.

    Monahan PO, Kroenke K, Callahan CM, et al. Reliability and validity of SymTrak, a multi-domain tool for monitoring symptoms of older adults with multiple chronic conditions. J Gen Intern Med. 2019;34(6):908-914.

    PubMed  PubMed Central  Article  Google Scholar 

  3. 3.

    Schneider KM, O'Donnell BE, Dean D. Prevalence of multiple chronic conditions in the United States' Medicare population. Health Qual Life Outcomes. 2009;7:82.

    PubMed  PubMed Central  Article  Google Scholar 

  4. 4.

    Leroy L, Bayliss E, Domino M, et al. The Agency for Healthcare Research and Quality Multiple Chronic Conditions Research Network: overview of research contributions and future priorities. Med Care. 2014;52 Suppl 3:S15-22.

    PubMed  Article  Google Scholar 

  5. 5.

    Sha MC, Callahan CM, Counsell SR, Westmoreland GR, Stump TE, Kroenke K. Physical symptoms as a predictor of health care use and mortality among older adults. Am J Med. 2005;118(3):301-306.

    PubMed  Article  Google Scholar 

  6. 6.

    Callahan CM, Weiner M, Counsell SR. Defining the domain of geriatric medicine in an urban public health system affiliated with an academic medical center. J Am Geriatr Soc. 2008;56(10):1802-1806.

    PubMed  PubMed Central  Article  Google Scholar 

  7. 7.

    Kroenke K. Studying symptoms: sampling and measurement issues. Ann Intern Med. 2001;134(9 Pt 2):844-853.

    CAS  PubMed  Article  Google Scholar 

  8. 8.

    Kessler RC, Zhao S, Katz SJ, et al. Past-year use of outpatient services for psychiatric problems in the National Comorbidity Survey. Am J Psychiatry. 1999;156:115-123.

    CAS  PubMed  Article  Google Scholar 

  9. 9.

    Kroenke K. Patients presenting with somatic complaints: epidemiology, psychiatric comorbidity and management. Int J Methods Psychiatr Res. 2003;12:34-43.

    PubMed  Article  Google Scholar 

  10. 10.

    Adelman RD, Greene MG, Ory MG. Communication between older patients and their physicians. Clin Geriatr Med. 2000;16(1):1-24, vii.

    CAS  PubMed  Article  Google Scholar 

  11. 11.

    Working Group on Health Outcomes for Older Persons with Multiple Chronic Conditions. Universal health outcome measures for older persons with multiple chronic conditions. J Am Geriatr Soc. 2012;60(12):2333-2341.

    PubMed Central  Article  PubMed  Google Scholar 

  12. 12.

    Horsman J, Furlong W, Feeny D, Torrance G. The Health Utilities Index (HUI): concepts, measurement properties and applications. Health Qual Life Outcomes. 2003;1:54.

    PubMed  PubMed Central  Article  Google Scholar 

  13. 13.

    Muthen LK, Muthen BO. Mplus User’s Guide. Eighth Edition. Los Angeles, CA: Muthen & Muthen; 1998-2017.

    Google Scholar 

  14. 14.

    Hu L-T, Bentler PM. Cutoff criteria for fit indexes in covariance structure analysis: conventional criteria versus new alternatives. Struct Equ Modeling. 1999;6(1):1-55.

    Article  Google Scholar 

  15. 15.

    Liu SF, Tu DS. On the applications of Fisher's least significant difference (LSD) procedure in three-arm clinical trials with survival endpoints. Drug Inf J. 2008;42(1):81-91.

    CAS  Article  Google Scholar 

  16. 16.

    Coste J, Guillemin F, Pouchot J, Fermanian J. Methodological approaches to shortening composite measurement scales. J Clin Epidemiol. 1997;50(3):247-252.

    CAS  PubMed  Article  Google Scholar 

  17. 17.

    Goetz C, Coste J, Lemetayer F, et al. Item reduction based on rigorous methodological guidelines is necessary to maintain validity when shortening composite measurement scales. J Clin Epidemiol. 2013;66(7):710-718.

    PubMed  Article  Google Scholar 

  18. 18.

    Kroenke K, Price RK. Symptoms in the community. Prevalence, classification, and psychiatric comorbidity. Arch Intern Med. 1993;153(21):2474-2480.

    CAS  PubMed  Article  Google Scholar 

  19. 19.

    Kroenke K, Talib TL, Stump TE, et al. Incorporating PROMIS symptom measures into primary care practice - a randomized clinical trial. J Gen Intern Med. 2018;33(8):1245-1252.

    PubMed  PubMed Central  Article  Google Scholar 

  20. 20.

    Davis LL, Kroenke K, Monahan P, Kean J, Stump TE. The SPADE symptom cluster in primary care patients with chronic pain. Clin J Pain. 2016;32(5):388-393.

    PubMed  PubMed Central  Article  Google Scholar 

  21. 21.

    Kroenke K, Wu J, Bair MJ, Krebs EE, Damush TM, Tu W. Reciprocal relationship between pain and depression: a 12-month longitudinal analysis in primary care. J Pain. 2011;12(9):964-973.

    PubMed  PubMed Central  Article  Google Scholar 

  22. 22.

    Kroenke K, Arrington ME, Mangelsdorff AD. The prevalence of symptoms in medical outpatients and the adequacy of therapy. Arch Intern Med. 1990;150(8):1685-1689.

    CAS  PubMed  Article  Google Scholar 

  23. 23.

    Kroenke K, Mangelsdorff AD. Common symptoms in ambulatory care: incidence, evaluation, therapy, and outcome. Am J Med. 1989;86(3):262-266.

    CAS  PubMed  Article  Google Scholar 

  24. 24.

    Kroenke K, Spitzer R, Williams JB, et al. Physical symptoms in primary care: predictors of psychiatric disorders and functional impairment. Arch Fam Med. 1994;3(9):774-779.

    CAS  PubMed  Article  Google Scholar 

  25. 25.

    Khan AA, Khan A, Harezlak J, Tu W, Kroenke K. Somatic symptoms in primary care: etiology and outcome. Psychosomatics. 2003;44(6):471-478.

    PubMed  Article  Google Scholar 

  26. 26.

    US Burden of Disease Collaborators. The state of US health, 1990-2010: burden of diseases, injuries, and risk factors. JAMA. 2013;310(6):591-608.

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  27. 27.

    Rooth MA. The Prevalence and Impact of Vision and Hearing Loss in the Elderly. N C Med J. 2017;78(2):118-120.

    PubMed  Google Scholar 

  28. 28.

    Chia E-M, Mitchell P, Rochtchina E, Foran S, Golding M, Wang JJ. Association Between Vision and Hearing Impairments and Their Combined Effects on Quality of Life. Arch Ophthalmol. 2006;124(10):1465-1470.

    PubMed  Article  Google Scholar 

  29. 29.

    Vancampfort D, Koyanagi A, Ward PB, et al. Chronic physical conditions, multimorbidity and physical activity across 46 low- and middle-income countries. Int J Behav Nutr Phys Act. 2017;14(1):6.

    PubMed  PubMed Central  Article  Google Scholar 

  30. 30.

    Kroenke K, Monahan PO, Kean J. Pragmatic characteristics of patient-reported outcome measures are important for use in clinical practice. J Clin Epidemiol. 2015;68(9):1085-1092.

    PubMed  PubMed Central  Article  Google Scholar 

  31. 31.

    Nunnally JC, Bernstein IH. Psychometric theory. 3rd ed. New York: McGraw-Hill; 1994.

    Google Scholar 

  32. 32.

    Nunes BP, Flores TR, Mielke GI, Thume E, Facchini LA. Multimorbidity and mortality in older adults: A systematic review and meta-analysis. Arch Gerontol Geriatr. 2016;67:130-138.

    PubMed  Article  Google Scholar 

  33. 33.

    Fabbri E, Zoli M, Gonzalez-Freire M, Salive ME, Studenski SA, Ferrucci L. Aging and Multimorbidity: New Tasks, Priorities, and Frontiers for Integrated Gerontological and Clinical Research. J Am Med Dir Assoc. 2015;16(8):640-647.

    PubMed  PubMed Central  Article  Google Scholar 

  34. 34.

    Garin N, Koyanagi A, Chatterji S, et al. Global Multimorbidity Patterns: A Cross-Sectional, Population-Based, Multi-Country Study. J Gerontol A Biol Sci Med Sci. 2016;71(2):205-214.

    PubMed  Article  Google Scholar 

  35. 35.

    Pefoyo AJ, Bronskill SE, Gruneir A, et al. The increasing burden and complexity of multimorbidity. BMC Public Health. 2015;15:415.

    PubMed  Article  Google Scholar 

  36. 36.

    Bahler C, Huber CA, Brungger B, Reich O. Multimorbidity, health care utilization and costs in an elderly community-dwelling population: a claims data based observational study. BMC Health Serv Res. 2015;15:23.

    PubMed  PubMed Central  Article  Google Scholar 

  37. 37.

    Cassell A, Edwards D, Harshfield A, et al. The epidemiology of multimorbidity in primary care: a retrospective cohort study. Br J Gen Pract. 2018;68(669):e245-e251.

    PubMed  PubMed Central  Article  Google Scholar 

  38. 38.

    Palladino R, Tayu Lee J, Ashworth M, Triassi M, Millett C. Associations between multimorbidity, healthcare utilisation and health status: evidence from 16 European countries. Age Ageing. 2016;45(3):431-435.

    PubMed  PubMed Central  Article  Google Scholar 

  39. 39.

    Besser J, Stropahl M, Urry E, Launer S. Comorbidities of hearing loss and the implications of multimorbidity for audiological care. Hear Res. 2018;369:3-14.

    PubMed  Article  Google Scholar 

  40. 40.

    Eckerblad J, Theander K, Ekdahl A, et al. Symptom burden in community-dwelling older people with multimorbidity: a cross-sectional study. BMC Geriatr. 2015;15:1.

    PubMed  PubMed Central  Article  Google Scholar 

  41. 41.

    Eckerblad J, Theander K, Ekdahl AW, Jaarsma T. Symptom trajectory and symptom burden in older people with multimorbidity, secondary outcome from the RCT AGe-FIT study. J Adv Nurs. 2016;72(11):2773-2783.

    PubMed  Article  Google Scholar 

  42. 42.

    Gould CE, O'Hara R, Goldstein MK, Beaudreau SA. Multimorbidity is associated with anxiety in older adults in the Health and Retirement Study. Int J Geriatr Psychiatry. 2016;31(10):1105-1115.

    PubMed  PubMed Central  Article  Google Scholar 

  43. 43.

    Helbig AK, Stockl D, Heier M, et al. Relationship between sleep disturbances and multimorbidity among community-dwelling men and women aged 65-93 years: results from the KORA Age Study. Sleep Med. 2017;33:151-159.

    PubMed  Article  Google Scholar 

  44. 44.

    Jones SM, Amtmann D, Gell NM. A psychometric examination of multimorbidity and mental health in older adults. Aging Ment Health. 2016;20(3):309-317.

    PubMed  Article  Google Scholar 

  45. 45.

    Portz JD, Kutner JS, Blatchford PJ, Ritchie CS. High Symptom Burden and Low Functional Status in the Setting of Multimorbidity. J Am Geriatr Soc. 2017;65(10):2285-2289.

    PubMed  PubMed Central  Article  Google Scholar 

  46. 46.

    Quinones AR, Markwardt S, Thielke S, Rostant O, Vasquez E, Botoseneanu A. Prospective Disability in Different Combinations of Somatic and Mental Multimorbidity. J Gerontol A Biol Sci Med Sci. 2018;73(2):204-210.

    PubMed  Article  Google Scholar 

  47. 47.

    Read JR, Sharpe L, Modini M, Dear BF. Multimorbidity and depression: A systematic review and meta-analysis. J Affect Disord. 2017;221:36-46.

    PubMed  Article  Google Scholar 

  48. 48.

    Sharpe L, McDonald S, Correia H, et al. Pain severity predicts depressive symptoms over and above individual illnesses and multimorbidity in older adults. BMC Psychiatry. 2017;17(1):166.

    PubMed  PubMed Central  Article  Google Scholar 

  49. 49.

    Stubbs B, Vancampfort D, Veronese N, et al. Depression and physical health multimorbidity: primary data and country-wide meta-analysis of population data from 190 593 people across 43 low- and middle-income countries. Psychol Med. 2017;47(12):2107-2117.

    CAS  PubMed  Article  Google Scholar 

  50. 50.

    Vancampfort D, Koyanagi A, Hallgren M, Probst M, Stubbs B. The relationship between chronic physical conditions, multimorbidity and anxiety in the general population: A global perspective across 42 countries. Gen Hosp Psychiatry. 2017;45:1-6.

    PubMed  Article  Google Scholar 

  51. 51.

    Villarreal AE, Grajales S, Lopez L, Britton GB, Panama Aging Research Initiative. Cognitive Impairment, Depression, and Cooccurrence of Both among the Elderly in Panama: Differential Associations with Multimorbidity and Functional Limitations. Biomed Res Int. 2015;2015:718701.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  52. 52.

    Wang YM, Song M, Wang R, et al. Insomnia and Multimorbidity in the Community Elderly in China. J Clin Sleep Med. 2017;13(4):591-597.

    PubMed  PubMed Central  Article  Google Scholar 

  53. 53.

    Ryan A, Wallace E, O'Hara P, Smith SM. Multimorbidity and functional decline in community-dwelling adults: a systematic review. Health Qual Life Outcomes. 2015;13:168.

    PubMed  PubMed Central  Article  Google Scholar 

  54. 54.

    Smith SM, Wallace E, O'Dowd T, Fortin M. Interventions for improving outcomes in patients with multimorbidity in primary care and community settings. Cochrane Database Syst Rev. 2016;3:CD006560.

    PubMed  Google Scholar 

  55. 55.

    Wallace E, Salisbury C, Guthrie B, Lewis C, Fahey T, Smith SM. Managing patients with multimorbidity in primary care. BMJ. 2015;350:h176.

    PubMed  Article  Google Scholar 

  56. 56.

    Kirshner B, Guyatt G. A methodological framework for assessing health indices. J Chronic Dis. 1985;38(1):27-36.

    CAS  PubMed  Article  Google Scholar 

  57. 57.

    Herdman M, Gudex C, Lloyd A, et al. Development and preliminary testing of the new five-level version of EQ-5D (EQ-5D-5L). Qual Life Res. 2011;20(10):1727-1736.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  58. 58.

    Janssen MF, Pickard AS, Golicki D, et al. Measurement properties of the EQ-5D-5L compared to the EQ-5D-3L across eight patient groups: a multi-country study. Qual Life Res. 2013;22(7):1717-1727.

    CAS  PubMed  Article  Google Scholar 

  59. 59.

    Kroenke K. A practical and evidence-based approach to common symptoms: a narrative review. Ann Intern Med. 2014;16(8):579-586.

    Article  Google Scholar 

  60. 60.

    Aktas A, Walsh D, Rybicki L. Symptom clusters: myth or reality? Palliat Med. 2010;24(4):373-385.

    PubMed  Article  Google Scholar 

Download references


This work was supported by a National Institute on Aging R01 award to P.O.M. (R01 AG043465). The sponsor had no role in study design; in the collection, analysis, and interpretation of data; in the writing of the report; or in the decision to submit the article for publication. The views expressed in this article are those of the authors and do not necessarily represent the views of the National Institute on Aging.

Author information



Corresponding author

Correspondence to Patrick O. Monahan PhD.

Ethics declarations

Conflict of Interest

All authors have no financial or non-financial interests. Patrick O. Monahan is Chief Technology Officer and has 3% equity ownership (valued at $3000) in a for-profit company called RestUp. The purpose of RestUp is to use internet and mobile technology to connect caregivers and care seekers. The RestUp caregivers are paid hourly, as 1099 contractors, by care seekers, and RestUp earns its income by receiving a percentage of each hour worked. The present paper has no overlap with the RestUp company; the SymTrak tool developed in the paper is not used in the RestUp company; and none of the activities of the RestUp company are involved in any way with this paper or the SymTrak tool.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Prior Presentations


Electronic Supplementary Material


(DOCX 622 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Monahan, P.O., Kroenke, K. & Stump, T.E. SymTrak-8 as a Brief Measure for Assessing Symptoms in Older Adults. J GEN INTERN MED (2020).

Download citation

Key Words

  • primary care
  • psychometrics
  • multimorbidity
  • aging
  • scale
  • symptoms