Implementation of a Behavioral Economics Electronic Health Record (BE-EHR) Module to Reduce Overtreatment of Diabetes in Older Adults

Abstract

Background

Intensive glycemic control is of unclear benefit and carries increased risk for older adults with diabetes. The American Geriatrics Society’s (AGS) Choosing Wisely (CW) guideline promotes less aggressive glycemic targets and reduction in pharmacologic therapy for older adults with type II diabetes. Meanwhile, behavioral economic (BE) approaches offer promise in influencing hard-to-change behavior, and previous studies have shown the benefits of using electronic health record (EHR) technology to encourage guideline adherence.

Objective

This study aimed to develop and pilot test an intervention that leverages BE with EHR technology to promote appropriate diabetes management in older adults.

Design

A pilot study within the New York University Langone Health (NYULH) EHR and Epic system to deliver BE-inspired nudges at five NYULH clinics at varying time points from July 12, 2018, through October 31, 2019.

Participants

Clinicians across five practices in the NYULH system whose patients were older adults (age 76 and older) with type II diabetes.

Interventions

A BE-EHR module comprising six nudges was developed through a series of design workshops, interviews, user-testing sessions, and clinic visits. BE principles utilized in the nudges include framing, social norming, accountable justification, defaults, affirmation, and gamification.

Main Measures

Patient-level CW compliance.

Key Results

CW compliance increased 5.1% from a 16-week interval at baseline to a 16-week interval post intervention. From February 14 to June 5, 2018 (prior to the first nudge launch in Vanguard clinics), CW compliance for 1278 patients was mean (95% CI)—16.1% (14.1%, 18.1%). From July 3 to October 22, 2019 (after BE-EHR module launch at all five clinics), CW compliance for 680 patients was 21.2% (18.1%, 24.3%).

Conclusions

The BE-EHR module shows promise for promoting the AGS CW guideline and improving diabetes management in older adults. A randomized controlled trial will commence to test the effectiveness of the intervention across 66 NYULH clinics.

NIH Trial Registry Number

NCT03409523

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2

References

  1. 1.

    Gerstein HC, Miller ME, Byington RP, et al. Effects of intensive glucose lowering in type 2 diabetes. N Engl J Med 2008;358(24):2545-2559.

    CAS  PubMed  Google Scholar 

  2. 2.

    Patel A, MacMahon S, Chalmers J, et al. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med 2008;358(24):2560-2572.

    CAS  PubMed  Google Scholar 

  3. 3.

    Duckworth W, Abraira C, Moritz T, et al. Glucose control and vascular complications in veterans with type 2 diabetes. N Engl J Med 2009;360(2):129-139.

    CAS  PubMed  Google Scholar 

  4. 4.

    Workgroup AGSCW. American Geriatrics Society identifies five things that healthcare providers and patients should question. J Am Geriatr Soc 2013;61(4):622-631.

    Google Scholar 

  5. 5.

    Shorr RI, Ray WA, Daugherty JR, Griffin MR. Incidence and risk factors for serious hypoglycemia in older persons using insulin or sulfonylureas. Arch Intern Med 1997;157(15):1681-1686.

    CAS  PubMed  Google Scholar 

  6. 6.

    Bremer JP, Jauch-Chara K, Hallschmid M, Schmid S, Schultes B. Hypoglycemia unawareness in older compared with middle-aged patients with type 2 diabetes. Diabetes Care 2009;32(8):1513-1517.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Huang ES, Laiteerapong N, Liu JY, John PM, Moffet HH, Karter AJ. Rates of complications and mortality in older patients with diabetes mellitus: the diabetes and aging study. JAMA Intern Med 2014;174(2):251-258.

    PubMed  PubMed Central  Google Scholar 

  8. 8.

    American Diabetes A 11. Older Adults Diabetes Care 2017;40(Suppl 1):S99-S104.

    Google Scholar 

  9. 9.

    Geller AI, Shehab N, Lovegrove MC, et al. National estimates of insulin-related hypoglycemia and errors leading to emergency department visits and hospitalizations. JAMA Intern Med 2014;174(5):678-686.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Boyd CM, Darer J, Boult C, Fried LP, Boult L, Wu AW. Clinical practice guidelines and quality of care for older patients with multiple comorbid diseases: implications for pay for performance. JAMA. 2005;294(6):716-724.

    CAS  PubMed  Google Scholar 

  11. 11.

    ABIM. Choosing Wisely: promoting conversations between patients and clinicians. 2019; https://www.choosingwisely.org/. Accessed July 20, 2019.

  12. 12.

    AGS. Choosing Wisely: an initiative of the ABIM Foundation. 2017; http://www.choosingwisely.org/clinician-lists/american-geriatrics-society-medication-to-control-type-2-diabetes/. Accessed July 20, 2019.

  13. 13.

    American Geriatrics Society Expert Panel on Care of Older Adults with Diabetes M, Moreno G, Mangione CM, Kimbro L, Vaisberg E. Guidelines abstracted from the american geriatrics society guidelines for improving the care of older adults with diabetes mellitus: 2013 update. J Am Geriatr Soc 2013;61(11):2020-2026.

    Google Scholar 

  14. 14.

    Workgroup AGSCW. American Geriatrics Society identifies another five things that healthcare providers and patients should question. J Am Geriatr Soc 2014;62(5):950-960.

    Google Scholar 

  15. 15.

    Ariely D. Predictably Irrational. New York: HarperCollins; 2008.

    Google Scholar 

  16. 16.

    Camerer C, Issacharoff S, Loewenstein G, O’Donoghue T, Rabin M. Regulation for conservatives: behavioral economics and the case for “asymmetric paternalism”. Univ Pa Law Rev 2003;101:1211-1254.

    Google Scholar 

  17. 17.

    Connolly T, Butler D. Regret in economic and psychological theories of choice. J Behav Decis Mak 2006;19(2):139-154.

    Google Scholar 

  18. 18.

    Kahneman D, Tversky A. Judgment under uncertainty: heuristics and biases. Science. 1974;185(4157):1124-1131.

    PubMed  Google Scholar 

  19. 19.

    Kahneman D, Tversky A. Prospect theory: an analysis of decision under risk. Econometrica. 1979;47(2):263-291.

    Google Scholar 

  20. 20.

    Loewenstein G, John L, Volpp K. Using decision errors to help people help themselves. Chapter 21 in The Behavioral Foundations of Public Policy, edited by Eldar Shafir. Princeton University Press, 2012:361–79.

  21. 21.

    Mullainathan S, Thaler R. Behavioral Economics. International Encyclopedia of the Social & Behavioral Sciences. Elsevier; 2001:1094-1100.

  22. 22.

    Thaler R, Sunstein C. Libertarian paternalism. Am Econ Rev 2003;93:175-179.

    Google Scholar 

  23. 23.

    Thaler R, Tversky A, Kahneman D, Schwartz A. The effect of myopia and loss aversion on risk taking: an experimental test. Q J Econ 1997;112(2):647-661.

    Google Scholar 

  24. 24.

    Tversky A, Kahneman D. Loss aversion in riskless choice: a reference-dependent model. Q J Econ 1991;106(4):1029-1061.

    Google Scholar 

  25. 25.

    Chapman GB, Coups EJ. Emotions and preventive health behavior: worry, regret, and influenza vaccination. Health Psychol 2006;25(1):82-90.

    PubMed  Google Scholar 

  26. 26.

    Marti J, Bachhuber M, Feingold J, Meads D, Richards M, Hennessy S. Financial incentives to discontinue long-term benzodiazepine use: a discrete choice experiment investigating patient preferences and willingness to participate. BMJ Open 2017;7(10):e016229.

    PubMed  PubMed Central  Google Scholar 

  27. 27.

    Meeker D, Linder JA, Fox CR, et al. Effect of Behavioral interventions on inappropriate antibiotic prescribing among primary care practices: a randomized clinical trial. JAMA. 2016;315(6):562-570.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Thaler R, Sunstein C. Nudge: Improving Decisions about Health, Wealth, and Happiness. 2nd ed. New York: Penguin Books; 2009.

    Google Scholar 

  29. 29.

    Loewenstein G, Brennan T, Volpp KG. Asymmetric paternalism to improve health behaviors. JAMA. 2007;298(20):2415-2417.

    CAS  PubMed  Google Scholar 

  30. 30.

    Volpp KG, Loewenstein G, Troxel AB, et al. A test of financial incentives to improve warfarin adherence. BMC Health Serv Res 2008;8(1):272.

    PubMed  PubMed Central  Google Scholar 

  31. 31.

    Kimmel SE, Troxel AB, Loewenstein G, et al. Randomized trial of lottery-based incentives to improve warfarin adherence. Am Heart J 2012;164(2):268-274.

    PubMed  PubMed Central  Google Scholar 

  32. 32.

    Osheroff JA, Teich JM, Middleton B, Steen EB, Wright A, Detmer DE. A roadmap for national action on clinical decision support. J Am Med Inform Assoc 2007;14(2):141-145.

    PubMed  PubMed Central  Google Scholar 

  33. 33.

    Jaspers MW, Smeulers M, Vermeulen H, Peute LW. Effects of clinical decision-support systems on practitioner performance and patient outcomes: a synthesis of high-quality systematic review findings. J Am Med Inform Assoc 2011;18(3):327-334.

    PubMed  PubMed Central  Google Scholar 

  34. 34.

    Bright TJ, Wong A, Dhurjati R, et al. Effect of clinical decision-support systems: a systematic review. Ann Intern Med 2012;157(1):29-43.

    PubMed  Google Scholar 

  35. 35.

    Moja L, Kwag KH, Lytras T, et al. Effectiveness of computerized decision support systems linked to electronic health records: a systematic review and meta-analysis. Am J Public Health 2014;104(12):e12-22.

    PubMed  PubMed Central  Google Scholar 

  36. 36.

    Khalifa M, Zabani I. Improving utilization of clinical decision support systems by reducing alert fatigue: strategies and recommendations. Stud Health Technol Inform 2016;226:51-4.

    PubMed  Google Scholar 

  37. 37.

    Charlson ME, Pompei P, Ales KL, MacKenzie CR. A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chronic Dis 1987; 40(5): 373-383.

    CAS  PubMed  Google Scholar 

  38. 38.

    Quan H, Li B, Couris CM, Fushimi K, Graham P, Hider P, Januel JM, Sundararajan V. Updating and validating the Charlson comorbidity index and score for risk adjustment in hospital discharge abstracts using data from 6 countries. Am J Epidemiol 2011; 173(6): 676-682.

    PubMed  PubMed Central  Google Scholar 

  39. 39.

    DuGoff EH, Canudas-Romo V, Buttorff C, Leff B, Anderson GF. Multiple chronic conditions and life expectancy: a life table analysis. Med Care 2014; 52(8): 688-694.

    PubMed  Google Scholar 

  40. 40.

    Chokshi S, Belli, HM, Troxel, AB, et al. Designing for implementation: user-centered development and pilot testing of a behavioral economic-inspired electronic health record clinical decision support module. Pilot and Feasibility Studies 2019; 5:28.

    PubMed  PubMed Central  Google Scholar 

  41. 41.

    Sacks DB, Bruns DE, Goldstein DE, Maclaren NK, McDonald JM, Parrott M. Guidelines and recommendations for laboratory analysis in the diagnosis and management of diabetes mellitus. Clin Chem 2002;48(3):436-472.

    CAS  PubMed  Google Scholar 

  42. 42.

    Patel MS, Volpp KG, Small DS, et al. Using active choice within the electronic health record to increase influenza vaccination rates. J Gen Intern Med 2017;32(7):790-795.

    PubMed  PubMed Central  Google Scholar 

  43. 43.

    Patel MS, Volpp KG, Small DS, et al. Using active choice within the electronic health record to increase physician ordering and patient completion of high-value cancer screening tests. Healthc (Amst) 2016;4(4):340-345.

    Google Scholar 

  44. 44.

    Patel MS, Kurtzman GW, Kannan S, et al. Effect of automated patient dashboard using active choice and peer comparison performance feedback to physicians on statin prescribing: the PRESCRIBE cluster randomized clinical trial. JAMA Netw Open 2018;1(3):e180818.

    PubMed  PubMed Central  Google Scholar 

  45. 45.

    Linsky A, Gellad WF, Linder JA, Friedberg MW. Advancing the science of deprescribing: a novel comprehensive conceptual framework. J Am Geriatr Soc 2019;67:2018-2022.

    PubMed  PubMed Central  Google Scholar 

  46. 46.

    Hussein H, Zaccardi F, Khunti K, et al. Efficacy and tolerability of sodium-glucose co-transporter-2 inhibitors and glucagon-like peptide-1 receptor agonists: a systematic review and network meta-analysis. Diabetes Obes Metab 2020; https://doi.org/10.1111/dom.14008.

Download references

Acknowledgments

We thank Catherine Dinh-Le, Katherine Driscoll, and Steven Robinson for their work in the development of the Campaign BE-EHR module component.

Funding

This research was supported by NIH NIA Award R21 AG057382 awarded to ABT and DMM. HMB was supported in part by NIH 5TL1TR001447.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hayley M. Belli PhD.

Ethics declarations

Conflict of Interest

The authors declare that they do not have a conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(PDF 1.83 MB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Belli, H.M., Chokshi, S.K., Hegde, R. et al. Implementation of a Behavioral Economics Electronic Health Record (BE-EHR) Module to Reduce Overtreatment of Diabetes in Older Adults. J GEN INTERN MED 35, 3254–3261 (2020). https://doi.org/10.1007/s11606-020-06119-z

Download citation

KEY WORDS

  • diabetes
  • behavioral economics
  • electronic health records
  • clinical decision support