Journal of General Internal Medicine

, Volume 32, Issue 11, pp 1172–1178 | Cite as

Survey of primary care providers’ knowledge of screening for, diagnosing and managing prediabetes

  • Eva Tseng
  • Raquel C. Greer
  • Paul O’Rourke
  • Hsin-Chieh Yeh
  • Maura M. McGuire
  • Jeanne M. Clark
  • Nisa M. Maruthur
Article

Abstract

Background

Prediabetes affects 86 million US adults, but primary care providers’ (PCPs') knowledge, practices, attitudes and beliefs toward prediabetes are unclear.

Objective

Assess PCPs’ (1) knowledge of risk factors that should prompt prediabetes screening, laboratory criteria for diagnosing prediabetes and guidelines for management of prediabetes; (2) management practices around prediabetes; (3) attitudes and beliefs about prediabetes.

Design

Self-administered written survey of PCPs.

Participants

One hundred forty of 155 PCPs (90%) attending an annual provider retreat for academically affiliated multispecialty practices in the mid-Atlantic region.

Main measures

Descriptive analyses of survey questions on knowledge, management, and attitudes and beliefs related to prediabetes. Multivariate logistic regression was used to determine the association between provider characteristics (gender, race/ethnicity, years since training, specialty and provider type) and knowledge, management, and attitudes and beliefs about prediabetes.

Key results

Six percent of PCPs correctly identified all of the risk factors that should prompt prediabetes screening. Only 17% of PCPs correctly identified the laboratory parameters for diagnosing prediabetes based on both fasting glucose and hemoglobin A1c. Nearly 90% of PCPs reported close follow-up (within 6 months) of patients with prediabetes. Few PCPs (11%) selected referral to a behavioral weight loss program as the recommended initial management approach to prediabetes. PCPs agreed that patient-related factors are important barriers to lifestyle change and metformin use. Provider characteristics were generally not associated with knowledge, management, attitudes and beliefs about prediabetes in multivariate analyses.

Conclusions

Addressing gaps in knowledge and the underutilization of behavioral weight loss programs in prediabetes are two essential areas where PCPs could take a lead in curbing the diabetes epidemic.

Keywords

Prediabetes Prevention Primary care 

Supplementary material

11606_2017_4103_MOESM1_ESM.docx (20 kb)
Online Table 1(DOCX 19 kb)
11606_2017_4103_MOESM2_ESM.docx (20 kb)
Online Table 2(DOCX 19 kb)
11606_2017_4103_MOESM3_ESM.docx (19 kb)
Online Table 3(DOCX 18 kb)
11606_2017_4103_MOESM4_ESM.docx (20 kb)
Online Table 4(DOCX 19 kb)
11606_2017_4103_MOESM5_ESM.docx (24 kb)
Online Fig 1Number of correct risk factors for prediabetes screening selected by PCPs. (DOCX 23 kb)
11606_2017_4103_MOESM6_ESM.docx (28 kb)
ESM 1(DOCX 28 kb)

References

  1. 1.
    Prevent Diabetes STAT. Prevent Diabetes STAT Web site. http://www.ama-assn.org/sub/prevent-diabetes-stat/index.html. Updated 2015. Accessed 23 May 2017.
  2. 2.
    Centers for Disease Control and Prevention (CDC). Awareness of prediabetes—United States, 2005-2010. MMWR Morb Mortal Wkly Rep. 2013;62(11):209–212.Google Scholar
  3. 3.
    Tabak AG, Herder C, Rathmann W, Brunner EJ, Kivimaki M. Prediabetes: A high-risk state for diabetes development. Lancet. 2012;379(9833):2279–2290.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    American Diabetes Association. Classification and diagnosis of diabetes. Diabetes Care. 2017;40(Suppl. 1): S11–24.CrossRefGoogle Scholar
  5. 5.
    Emerging Risk Factors Collaboration, Seshasai SR, Kaptoge S, Thompson A, Di Angelantonio E, Gao P, et al. Diabetes mellitus, fasting glucose, and risk of cause-specific death. N Engl J Med. 2011;364(9):829–841.CrossRefGoogle Scholar
  6. 6.
    Gong Q, Zhang P, Wang J, Gregg EW, Li H, Zhang B, et al. Changes in mortality in people with IGT before and after the onset of diabetes during the 23-year follow-up of the Da Qing Diabetes Prevention Study. Diabetes Care. 2016;39(9):1550–1555.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Diabetes Prevention Program Research Group, Knowler WC, Fowler SE, Hamman RF, Christophi CA, Hoffman HJ, et al. 10-year follow-up of diabetes incidence and weight loss in the Diabetes Prevention Program Outcomes Study. Lancet. 2009;374(9702):1677–1686.CrossRefPubMedCentralGoogle Scholar
  8. 8.
    Knowler WC, Barrett-Connor E, Fowler SE, Hamman RF, Lachin JM, Walker EA, et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med. 2002;346(6):393–403.CrossRefPubMedGoogle Scholar
  9. 9.
    Diabetes Prevention Program Research Group. Long-term effects of lifestyle intervention or metformin on diabetes development and microvascular complications over 15-year follow-up: The diabetes prevention program outcomes study. Lancet Diabetes Endocrinol. 2015.Google Scholar
  10. 10.
    American Diabetes Association. Prevention or delay of type 2 diabetes. Diabetes Care. 2017;40(Supplement 1):S44–S47.Google Scholar
  11. 11.
    Centers for Disease Control and Prevention (CDC). National Diabetes Prevention Program. National Diabetes Prevention Program Web site. http://www.cdc.gov/diabetes/prevention/index.htm. Updated 2016. Accessed 23 May 2017.
  12. 12.
    Rhee MK, Herrick K, Ziemer DC, Vaccarino V, Weintraub WS, Narayan KM, et al. Many Americans have pre-diabetes and should be considered for metformin therapy. Diabetes Care. 2010;33(1):49–54.CrossRefPubMedGoogle Scholar
  13. 13.
    Karve A, Hayward RA. Prevalence, diagnosis, and treatment of impaired fasting glucose and impaired glucose tolerance in nondiabetic US adults. Diabetes Care. 2010;33(11):2355–2359.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Schmittdiel JA, Adams SR, Segal J, Griffin MR, Roumie CL, Ohnsorg K, et al. Novel use and utility of integrated electronic health records to assess rates of prediabetes recognition and treatment: Brief report from an integrated electronic health records pilot study. Diabetes Care. 2014;37(2):565–568.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Moin T, Li J, Duru OK, Ettner S, Turk N, Keckhafer A, et al. Metformin prescription for insured adults with prediabetes from 2010 to 2012: a retrospective cohort study. Ann Intern Med. 2015;162(8):542–548.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Siu AL, U S Preventive Services Task Force. Screening for abnormal blood glucose and type 2 diabetes mellitus: US Preventive Services Task Force recommendation statement. Ann Intern Med. 2015;163(11):861–868.CrossRefPubMedGoogle Scholar
  17. 17.
    Shah BR, Hwee J, Anand SS, Austin PC, Manuel DG, Hux JE. Family physician ethnicity influences quality of diabetes care for Chinese but not South Asian patients. Prim Care Diabetes. 2015;9(6):432–8.CrossRefPubMedGoogle Scholar
  18. 18.
    Nathan DM, Davidson MB, DeFronzo RA, et al. Impaired fasting glucose and impaired glucose tolerance: Implications for care. Diabetes Care. 2007;30(3):753–759.CrossRefPubMedGoogle Scholar
  19. 19.
    Cabana MD, Rand CS, Powe NR, et al. Why don’t physicians follow clinical practice guidelines? A framework for improvement. JAMA. 1999;282:1458–1465.CrossRefPubMedGoogle Scholar
  20. 20.
    Chan WV, Pearson TA, Bennett GC, Cushman WC, Gaziano TA, Gorman PN, et al. ACC/AHA Special Report: Clinical practice Guideline Implementation Science Work Group: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J Am Coll Cardiol. 2017;69(8):1076–1092.CrossRefPubMedGoogle Scholar
  21. 21.
    Kawamoto K, Houlihan CA, Balas EA, Lobach DF. Improving clinical practice using clinical decision support systems: a systematic review of trials to identify features critical to success. BMJ. 2005;330(7494):765.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Kane RL, Johnson PE, Town RJ, et al. Economic Incentives for Preventive Care: Summary. In: AHRQ Evidence Report Summaries. Rockville (MD): Agency for Healthcare Research and Quality (US); 2004: 1998–2005. 101. Available from: https://www.ncbi.nlm.nih.gov/books/NBK11845/
  23. 23.
    Pan XR, Li GW, Hu YH, Wang JX, Yang WY, An ZX, et al. Effects of diet and exercise in preventing NIDDM in people with impaired glucose tolerance. The Da Qing IGT and Diabetes Study. Diabetes Care. 1997;20(4):537–544.CrossRefPubMedGoogle Scholar
  24. 24.
    Lindstrom J, Louheranta A, Mannelin M, Rastas M, Salminen V, Eriksson J, et al. The Finnish Diabetes Prevention Study (DPS). Diabetes Care. 2003;26(12):3230–3236.Google Scholar
  25. 25.
    Spitalnic P. Certification of Diabetes Prevention Programs [Internet]. Baltimore (MD): Department of Health and Human Services; 2016 [cited 2016 Sept 9]. Available from: https://www.cms.gov/Research-Statistics-Data-and-Systems/Research/ActuarialStudies/Downloads/Diabetes-Prevention-Certification-2016-03-14.pdf
  26. 26.
    Tseng E, Yeh HC, Maruthur NM. Metformin use in prediabetes among US adults, 2005-2012. Diabetes Care. 2017. doi: 10.2337/dc16-1509.
  27. 27.
    Mainous AG, Tanner RJ, Scuderi CB, Porter M, Carek PJ. Prediabetes screening and treatment in diabetes prevention: the impact of physician attitudes. J Am Board Fam Med. 2016;29(6):663–671.Google Scholar

Copyright information

© Society of General Internal Medicine 2017

Authors and Affiliations

  • Eva Tseng
    • 1
  • Raquel C. Greer
    • 1
    • 2
  • Paul O’Rourke
    • 3
  • Hsin-Chieh Yeh
    • 1
    • 2
    • 4
  • Maura M. McGuire
    • 1
    • 5
  • Jeanne M. Clark
    • 1
    • 2
    • 4
  • Nisa M. Maruthur
    • 1
    • 2
    • 4
  1. 1.Division of General Internal MedicineThe Johns Hopkins UniversityBaltimoreUSA
  2. 2.Welch Center for Prevention, Epidemiology, & Clinical ResearchThe Johns Hopkins UniversityBaltimoreUSA
  3. 3.Division of General Internal MedicineJohns Hopkins Bayview Medical CenterBaltimoreUSA
  4. 4.Department of EpidemiologyThe Johns Hopkins University Bloomberg School of Public HealthBaltimoreUSA
  5. 5.Johns Hopkins Community PhysiciansBaltimoreUSA

Personalised recommendations