Skip to main content

Factors Associated with Ordering Laboratory Monitoring of High-Risk Medications



Knowledge about factors associated with provider ordering of appropriate testing is limited.


To determine physician factors associated with ordering recommended laboratory monitoring tests for high-risk medications.


Retrospective cohort study of patients prescribed a high-risk medication requiring laboratory monitoring in a large multispecialty group practice between 1 January 2008 and 31 December 2008. Analyses are based on administrative claims and electronic medical records. The outcome is a physician order for each recommended laboratory test for each prescribed medication. Key predictor variables are physician characteristics, including age, gender, specialty training, years since completing training, and prescribing volume. Additional variables are patient characteristics such as age, gender, comorbidity burden, whether the medication requiring monitoring is new or chronic, and drug-test characteristics such as inclusion in black box warnings. We used multivariable logistic regression, accounting for clustering of drugs within patients and patients within providers.


Physician orders for laboratory testing varied across drug-test pairs and ranged from 9 % (Primidone–Phenobarbital level) to 97 % (Azathioprine–CBC), with half of the drug-test pairs in the 85-91 % ordered range. Test ordering was associated with higher provider prescribing volume for study drugs and specialist status (primary care providers were less likely to order tests than specialists). Patients with higher comorbidity burden and older patients were more likely to have appropriate tests ordered. Drug-test combinations with black box warnings were more likely to have tests ordered.


Interventions to improve laboratory monitoring should focus on areas with the greatest potential for improvement: providers with lower frequencies of prescribing medications with monitoring recommendations and those prescribing these medications for healthier and younger patients; patients with less interaction with the health care system are at particular risk of not having tests ordered. Black box warnings were associated with higher ordering rates and may be a tool to increase appropriate test ordering.

This is a preview of subscription content, access via your institution.


  1. 1.

    Institute of Medicine. To Err is Human: Building a Safer Health System. 2000.

  2. 2.

    Gurwitz JH, Field TS, Harrold LR, et al. Incidence and preventability of adverse drug events among older persons in the ambulatory setting. JAMA. 2003;289(9):1107–1116.

    PubMed  Article  Google Scholar 

  3. 3.

    Dam TN, Panizzon R, Jemec GB. Methotrexate use and monitoring in Switzerland and Denmark. Dermatology. 2005;210(3):253.

    PubMed  Article  Google Scholar 

  4. 4.

    Haupt DW, Rosenblatt LC, Kim E, Baker RA, Whitehead R, Newcomer JW. Prevalence and predictors of lipid and glucose monitoring in commercially insured patients treated with second-generation antipsychotic agents. Am J Psychiatry. 2009;166(3):345–353.

    PubMed  Article  Google Scholar 

  5. 5.

    Matheny ME, Sequist TD, Seger AC, et al. A randomized trial of electronic clinical reminders to improve medication laboratory monitoring. J Am Med Inform Assoc. 2008;15(4):424–429.

    PubMed Central  PubMed  Article  Google Scholar 

  6. 6.

    Hoch I, Heymann AD, Kurman I, Valinsky LJ, Chodick G, Shalev V. Countrywide computer alerts to community physicians improve potassium testing in patients receiving diuretics. J Am Med Inform Assoc. 2003;10(6):541–546.

    PubMed Central  PubMed  Article  Google Scholar 

  7. 7.

    Palen TE, Raebel M, Lyons E, Magid DM. Evaluation of laboratory monitoring alerts within a computerized physician order entry system for medication orders. Am J Manag Care. 2006;12(7):389–395.

    PubMed  Google Scholar 

  8. 8.

    Raebel MA, Chester EA, Newsom EE, et al. Randomized trial to improve laboratory safety monitoring of ongoing drug therapy in ambulatory patients. Pharmacotherapy. 2006;26(5):619–626.

    CAS  PubMed  Article  Google Scholar 

  9. 9.

    Lo HG, Matheny ME, Seger DL, Bates DW, Gandhi TK. Impact of non-interruptive medication laboratory monitoring alerts in ambulatory care. J Am Med Inform Assoc. 2009;16(1):66–71.

    PubMed Central  PubMed  Article  Google Scholar 

  10. 10.

    Steele AW, Eisert S, Witter J, et al. The effect of automated alerts on provider ordering behavior in an outpatient setting. PLoS Med. 2005;2(9):e255.

    PubMed Central  PubMed  Article  Google Scholar 

  11. 11.

    Raebel MA, Lyons EE, Chester EA, et al. Improving laboratory monitoring at initiation of drug therapy in ambulatory care: a randomized trial. Arch Intern Med. 2005;165(20):2395–2401.

    PubMed  Article  Google Scholar 

  12. 12.

    Tjia J, Field TS, Garber LD, et al. Development and pilot testing of guidelines to monitor high-risk medications in the ambulatory setting. Am J Manag Care. 2010;16(7):489–496.

    PubMed  Google Scholar 

  13. 13.

    Tjia J, Field TS, Fischer SH, et al. Quality measurement of medication monitoring in the “meaningful use” era. Am J Manag Care. 2011;17(9):633–637.

    PubMed  Google Scholar 

  14. 14.

    Deyo RA, Cherkin DC, Ciol MA. Adapting a clinical comorbidity index for use with ICD-9-CM administrative databases. J Clin Epidemiol. 1992;45(6):613–619.

    CAS  PubMed  Article  Google Scholar 

  15. 15.

    Charlson ME, Pompei P, Ales KL, MacKenzie CR. A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chronic Dis. 1987;40(5):373–383.

    CAS  PubMed  Article  Google Scholar 

  16. 16.

    Chu YT, Ng YY, Wu SC. Comparison of different comorbidity measures for use with administrative data in predicting short- and long-term mortality. BMC Health Serv Res. 2010;10:140.

    PubMed Central  PubMed  Article  Google Scholar 

  17. 17.

    Grol R. Successes and failures in the implementation of evidence-based guidelines for clinical practice. Med Care. 2001;39(8 Suppl 2):II46–54.

    CAS  PubMed  Google Scholar 

  18. 18.

    Grimshaw JM, Shirran L, Thomas R, et al. Changing provider behavior: an overview of systematic reviews of interventions. Med Care. 2001;39(8 Suppl 2):II2–45.

    CAS  PubMed  Google Scholar 

  19. 19.

    Wang LM, Wong M, Lightwood JM, Cheng CM. Black box warning contraindicated comedications: concordance among three major drug interaction screening programs. Ann Pharmacother. 2010;44(1):28–34.

    CAS  PubMed  Article  Google Scholar 

  20. 20.

    Lasser KE, Seger DL, Yu DT, et al. Adherence to black box warnings for prescription medications in outpatients. Arch Intern Med. 2006;166(3):338–344.

    PubMed  Article  Google Scholar 

  21. 21.

    Yu DT, Seger DL, Lasser KE, et al. Impact of implementing alerts about medication black-box warnings in electronic health records. Pharmacoepidemiol Drug Saf. Dec 28 2010.

  22. 22.

    UpToDate. 2010; Available at: Accessed May 15, 2014.

  23. 23.

    Micromedex® Healthcare Series. Thomson Reuters (Healthcare) Inc; 2010. Accessed May 15, 2014.

  24. 24.

    Pharmacist’s Letter. Therapetic Research Center; 2010. Accessed May 15, 2014.

  25. 25.

    Physicians’ Desk Reference. Thomson Corporation; 2010. Accessed May 15, 2014.

  26. 26.

    Rogers WH. Regression standard errors in clustered samples. Stata Technical Bulletin. 1993;13:19–23.

    Google Scholar 

  27. 27.

    Williams RL. A note on robust variance estimation for cluster-correlated data. Biometrics. 2000;56(2):645–646.

    CAS  PubMed  Article  Google Scholar 

  28. 28.

    Wooldridge JM. Econometric Analysis of Cross Section and Panel Data. Cambridge, MA: MIT Press; 2002.

    Google Scholar 

  29. 29.

    Froot KA. Consistent covariance matrix estimation with cross-sectional dependence and heteroskedasticity in financial data. Journal of Financial and Quantitative Analysis. 1989;24:333–355.

    Article  Google Scholar 

  30. 30.

    Harrell FE. Regression modeling strategies: with applications to linear models, logistic regression, and survival analysis: Springer Verlag; 2001.

    Google Scholar 

  31. 31.

    Goldman R, Soran C, Hayward G, Simon S. Doctors’ perceptions of laboratory monitoring in office practice. J Eval Clin Pract. 2010;16(6):1136–1141.

    PubMed  Article  Google Scholar 

  32. 32.

    Galanter WL, Didomenico RJ, Polikaitis A. A trial of automated decision support alerts for contraindicated medications using computerized physician order entry. J Am Med Inform Assoc. 2005;12(3):269–274.

    PubMed Central  PubMed  Article  Google Scholar 

  33. 33.

    van Luin M, Wit FW, Smit C, et al. Adherence to HIV Therapeutic Drug Monitoring Guidelines in The Netherlands. Ther Drug Monit. Dec 29.

  34. 34.

    Long CL, Raebel MA, Price DW, Magid DJ. Compliance with dosing guidelines in patients with chronic kidney disease. Ann Pharmacother. 2004;38(5):853–858.

    PubMed  Article  Google Scholar 

  35. 35.

    Worrall G, Chaulk P, Freake D. The effects of clinical practice guidelines on patient outcomes in primary care: a systematic review. CMAJ. 1997;156(12):1705–1712.

    CAS  PubMed Central  PubMed  Google Scholar 

  36. 36.

    Wagner AK, Chan KA, Dashevsky I, et al. FDA drug prescribing warnings: is the black box half empty or half full? Pharmacoepidemiol Drug Saf. 2006;15(6):369–386.

    PubMed  Article  Google Scholar 

  37. 37.

    Cabana MD, Rand CS, Powe NR, et al. Why don’t physicians follow clinical practice guidelines? A framework for improvement. JAMA. 1999;282(15):1458–1465.

    CAS  PubMed  Article  Google Scholar 

  38. 38.

    Steinman MA, Patil S, Kamat P, Peterson C, Knight SJ. A taxonomy of reasons for not prescribing guideline-recommended medications for patients with heart failure. Am J Geriatr Pharmacother. 2010;8(6):583–594.

    PubMed Central  PubMed  Article  Google Scholar 

  39. 39.

    Carlsen B, Glenton C, Pope C. Thou shalt versus thou shalt not: a meta-synthesis of GPs’ attitudes to clinical practice guidelines. Br J Gen Pract. 2007;57(545):971–978.

    PubMed Central  PubMed  Article  Google Scholar 

  40. 40.

    Leape LL, Weissman JS, Schneider EC, Piana RN, Gatsonis C, Epstein AM. Adherence to practice guidelines: the role of specialty society guidelines. Am Heart J. 2003;145(1):19–26.

    PubMed  Article  Google Scholar 

  41. 41.

    Fischer SH, Field TS, Gagne SJ, et al. Patient Completion of Laboratory Tests to Monitor Medication Therapy: A Mixed-Methods Study. J Gen Intern Med. 2013;28(4):513–521.

    PubMed Central  PubMed  Article  Google Scholar 

  42. 42.

    Scholle SH, Roski J, Adams JL, et al. Benchmarking physician performance: reliability of individual and composite measures. Am J Manag Care. 2008;14(12):833–838.

    PubMed Central  PubMed  Google Scholar 

  43. 43.

    Boudourakis LD, Wang TS, Roman SA, Desai R, Sosa JA. Evolution of the surgeon-volume, patient-outcome relationship. Ann Surg. 2009;250(1):159–165.

    PubMed  Article  Google Scholar 

  44. 44.

    Rogers SO Jr, Wolf RE, Zaslavsky AM, Wright WE, Ayanian JZ. Relation of surgeon and hospital volume to processes and outcomes of colorectal cancer surgery. Ann Surg. 2006;244(6):1003–1011.

    PubMed Central  PubMed  Article  Google Scholar 

  45. 45.

    Birkmeyer JD, Siewers AE, Finlayson EV, et al. Hospital volume and surgical mortality in the United States. N Engl J Med. 2002;346(15):1128–1137.

    PubMed  Article  Google Scholar 

  46. 46.

    Holmboe ES, Wang Y, Tate JP, Meehan TP. The effects of patient volume on the quality of diabetic care for Medicare beneficiaries. Med Care. 2006;44(12):1073–1077.

    PubMed  Article  Google Scholar 

  47. 47.

    Go AS, Rao RK, Dauterman KW, Massie BM. A systematic review of the effects of physician specialty on the treatment of coronary disease and heart failure in the United States. Am J Med. 2000;108(3):216–226.

    CAS  PubMed  Article  Google Scholar 

  48. 48.

    Chin MH, Zhang JX, Merrell K. Specialty differences in the care of older patients with diabetes. Med Care. 2000;38(2):131–140.

    CAS  PubMed  Article  Google Scholar 

  49. 49.

    Harrold LR, Field TS, Gurwitz JH. Knowledge, patterns of care, and outcomes of care for generalists and specialists. J Gen Intern Med. 1999;14(8):499–511.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  50. 50.

    Simon GE, Von Korff M, Rutter CM, Peterson DA. Treatment process and outcomes for managed care patients receiving new antidepressant prescriptions from psychiatrists and primary care physicians. Arch Gen Psychiatry. 2001;58(4):395–401.

    CAS  PubMed  Article  Google Scholar 

  51. 51.

    Raebel MA, Carroll NM, Simon SR, et al. Liver and thyroid monitoring in ambulatory patients prescribed amiodarone in 10 HMOs. J Manag Care Pharm. 2006;12(8):656–664.

    PubMed  Google Scholar 

  52. 52.

    ten Berg MJ, Huisman A, van den Bemt PM, Schobben AF, Egberts AC, van Solinge WW. Linking laboratory and medication data: new opportunities for pharmacoepidemiological research. Clin Chem Lab Med. 2007;45(1):13–19.

    PubMed  Google Scholar 

  53. 53.

    Schiff GD, Klass D, Peterson J, Shah G, Bates DW. Linking laboratory and pharmacy: opportunities for reducing errors and improving care. Arch Intern Med. 2003;163(8):893–900.

    PubMed  Article  Google Scholar 

Download references


The authors would like to acknowledge the contributions of Devi Sundaresan, MA; Shawn Gagne, BA; and Yanfang Zhao, MA.

Conflict of Interest

The authors declare that they do not have a conflict of interest.

Funding Sources

This study was funded by grants R18 HS17203, R18 HS17817, and R18 HS17906 from the Agency for Healthcare Research and Quality.

Author information



Corresponding author

Correspondence to Shira H. Fischer MD, PhD.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fischer, S.H., Tjia, J., Reed, G. et al. Factors Associated with Ordering Laboratory Monitoring of High-Risk Medications. J GEN INTERN MED 29, 1589–1598 (2014).

Download citation


  • laboratory monitoring
  • high-risk medications
  • ambulatory