Skip to main content
Log in

Association Between Anesthesia Delivered During Tumor Resection and Cancer Survival: a Systematic Review of a Mixed Picture with Constant Themes

  • Review Article
  • Published:
Journal of Gastrointestinal Surgery

Abstract

Background

Surgery is required for cure of most solid tumors, and general anesthesia is required for most cancer surgery. The vast majority of cancer surgery is facilitated by general anesthesia using volatile inhalational agents such as isoflurane and sevoflurane. Only recently have the immunologic and oncologic effect of inhalational agents, and their alternative, propofol-based total intravenous anesthesia (TIVA), come under investigation.

Methods

Between January 2019 and June 2020, English language articles on PubMed were searched for the keywords “Propofol” “TIVA” or “IV anesthesia” and either “cancer surgery” or “surgical oncology.” Duplicates were removes, manuscripts classified as either in vitro, animal, translational, or clinical studies, and their results summarized within these categories.

Results

In-vitro and translational data suggest that inhalational anesthetics are potent immunosuppressive and tumorigenic agents that promote metastasis, while propofol is anti-inflammatory, anti-tumorigenic, and prevents metastasis development. Clinically there is a recurring association, based largely on retrospective, single institution series, that TIVA is associated with significant improvements in disease-free interval and overall survival in a number of, but not all, solid tumors. The longer the surgery is, the more intense the surgical trauma is, the more aggressive the malignancy is, and the higher likelihood of an association is.

Discussion

Prospective randomized trials, coupled with basic science and translational studies, are needed to further define this association.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

TIVA:

Total intravenous anesthesia

NK cell:

Natural killer cell

COX:

Cyclooxygenase

VEGF:

Vascular endothelial growth factor

PDGF:

Platelet-derived growth factor

MMPs:

Matrix metalloproteinases

PGE2 :

Prostaglandin E2

NET:

Neutrophil extracellular trap

vWF:

von Willebrand factor

TGFß:

Transforming growth factor beta

References

  1. Yap A, Lopez-Olivo MA, Dubowitz J, Hiller J, Riedel B, Global Onco-Anesthesia Research Collaboration G. Anesthetic technique and cancer outcomes: a meta-analysis of total intravenous versus volatile anesthesia. Canadian journal of anaesthesia = Journal canadien d'anesthesie. 2019;66(5):546-61. doi:https://doi.org/10.1007/s12630-019-01330-x.

    Article  PubMed  Google Scholar 

  2. Perry NJS, Buggy D, Ma D. Can anesthesia influence cancer outcomes after surgery? JAMA surgery. 2019;154(4):279-80. doi:https://doi.org/10.1001/jamasurg.2018.4619.

    Article  PubMed  Google Scholar 

  3. Hiller JG, Perry NJ, Poulogiannis G, Riedel B, Sloan EK. Perioperative events influence cancer recurrence risk after surgery. Nat Rev Clin Oncol. 2018;15(4):205-18. doi:https://doi.org/10.1038/nrclinonc.2017.194.

    Article  PubMed  Google Scholar 

  4. Dubowitz JA, Sloan EK, Riedel BJ. Implicating anaesthesia and the perioperative period in cancer recurrence and metastasis. Clin Exp Metastasis. 2018;35(4):347-58. doi:https://doi.org/10.1007/s10585-017-9862-x.

    Article  PubMed  Google Scholar 

  5. Dillekås H, Demicheli R, Ardoino I, Jensen SAH, Biganzoli E, Straume O. The recurrence pattern following delayed breast reconstruction after mastectomy for breast cancer suggests a systemic effect of surgery on occult dormant micrometastases. Breast Cancer Res Treat. 2016;158(1):169-78. doi:https://doi.org/10.1007/s10549-016-3857-1.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Tohme S, Simmons RL, Tsung A. Surgery for cancer: a trigger for metastases. Cancer research. 2017;77(7):1548-52. doi:https://doi.org/10.1158/0008-5472.Can-16-1536.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sessler DI, Riedel B. Anesthesia and cancer recurrence: context for divergent study outcomes. Anesthesiology. 2019;130(1):3-5. doi:https://doi.org/10.1097/ALN.0000000000002506.

    Article  PubMed  Google Scholar 

  8. Yoo S, Lee HB, Han W, Noh DY, Park SK, Kim WH et al. Total intravenous anesthesia versus inhalation anesthesia for breast cancer surgery: a retrospective cohort study. Anesthesiology. 2019;130(1):31-40. doi:https://doi.org/10.1097/ALN.0000000000002491.

    Article  CAS  PubMed  Google Scholar 

  9. Huang WW, Zhu WZ, Mu DL, Ji XQ, Nie XL, Li XY et al. Perioperative management may improve long-term survival in patients after lung cancer surgery: a retrospective cohort study. Anesthesia and analgesia. 2018;126(5):1666-74. doi:https://doi.org/10.1213/ANE.0000000000002886.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Oh CS, Lee J, Yoon TG, Seo EH, Park HJ, Piao L et al. Effect of equipotent doses of propofol versus sevoflurane anesthesia on regulatory T cells after breast cancer surgery. Anesthesiology. 2018;129(5):921-31. doi:https://doi.org/10.1097/ALN.0000000000002382.

    Article  CAS  PubMed  Google Scholar 

  11. Jun IJ, Jo JY, Kim JI, Chin JH, Kim WJ, Kim HR et al. Impact of anesthetic agents on overall and recurrence-free survival in patients undergoing esophageal cancer surgery: a retrospective observational study. Sci Rep. 2017;7(1):14020. doi:https://doi.org/10.1038/s41598-017-14147-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wigmore TJ, Mohammed K, Jhanji S. Long-term survival for patients undergoing volatile versus IV anesthesia for cancer surgery: a retrospective analysis. Anesthesiology. 2016;124(1):69-79. doi:https://doi.org/10.1097/ALN.0000000000000936.

    Article  CAS  PubMed  Google Scholar 

  13. Enlund M, Berglund A, Andreasson K, Cicek C, Enlund A, Bergkvist L. The choice of anaesthetic—sevoflurane or propofol—and outcome from cancer surgery: a retrospective analysis. Ups J Med Sci. 2014;119(3):251-61. doi:https://doi.org/10.3109/03009734.2014.922649.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Buckley A, McQuaid S, Johnson P, Buggy DJ. Effect of anaesthetic technique on the natural killer cell anti-tumour activity of serum from women undergoing breast cancer surgery: a pilot study. Br J Anaesth. 2014;113 Suppl 1:i56-62. doi:https://doi.org/10.1093/bja/aeu200.

    Article  CAS  PubMed  Google Scholar 

  15. Irwin MG, Chung CKE, Ip KY, Wiles MD. Influence of propofol-based total intravenous anaesthesia on peri-operative outcome measures: a narrative review. Anaesthesia. 2020;75 Suppl 1:e90-e100. doi:https://doi.org/10.1111/anae.14905.

    Article  PubMed  Google Scholar 

  16. Deiner S. Highlights of anesthetic considerations for intraoperative neuromonitoring. Semin Cardiothorac Vasc Anesth. 2010;14(1):51-3. doi:https://doi.org/10.1177/1089253210362792.

    Article  PubMed  Google Scholar 

  17. Chang YT, Wu CC, Tang TY, Lu CT, Lai CS, Shen CH. Differences between total intravenous anesthesia and inhalation anesthesia in free flap surgery of head and neck cancer. PloS one. 2016;11(2):e0147713. doi:https://doi.org/10.1371/journal.pone.0147713.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tang N, Ou C, Liu Y, Zuo Y, Bai Y. Effect of inhalational anaesthetic on postoperative cognitive dysfunction following radical rectal resection in elderly patients with mild cognitive impairment. J Int Med Res. 2014;42(6):1252-61. doi:https://doi.org/10.1177/0300060514549781.

    Article  CAS  PubMed  Google Scholar 

  19. Geng YJ, Wu QH, Zhang RQ. Effect of propofol, sevoflurane, and isoflurane on postoperative cognitive dysfunction following laparoscopic cholecystectomy in elderly patients: a randomized controlled trial. J Clin Anesth. 2017;38:165-71. doi:https://doi.org/10.1016/j.jclinane.2017.02.007.

    Article  CAS  PubMed  Google Scholar 

  20. Ruan D, So SP. Prostaglandin E2 produced by inducible COX-2 and mPGES-1 promoting cancer cell proliferation in vitro and in vivo. Life Sci. 2014;116(1):43-50. doi:https://doi.org/10.1016/j.lfs.2014.07.042.

    Article  CAS  PubMed  Google Scholar 

  21. Zhou L, Li Y, Li X, Chen G, Liang H, Wu Y et al. Propranolol attenuates surgical stress-induced elevation of the regulatory T cell response in patients undergoing radical mastectomy. J Immunol. 2016;196(8):3460-9. doi:https://doi.org/10.4049/jimmunol.1501677.

    Article  CAS  PubMed  Google Scholar 

  22. Kim R. Effects of surgery and anesthetic choice on immunosuppression and cancer recurrence. J Transl Med. 2018;16(1):8. doi:https://doi.org/10.1186/s12967-018-1389-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Choi JE, Villarreal J, Lasala J, Gottumukkala V, Mehran RJ, Rice D et al. Perioperative neutrophil:lymphocyte ratio and postoperative NSAID use as predictors of survival after lung cancer surgery: a retrospective study. Cancer Med. 2015;4(6):825-33. doi:https://doi.org/10.1002/cam4.428.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Grilz E, Mauracher LM, Posch F, Königsbrügge O, Zöchbauer-Müller S, Marosi C et al. Citrullinated histone H3, a biomarker for neutrophil extracellular trap formation, predicts the risk of mortality in patients with cancer. Br J Haematol. 2019;186(2):311-20. doi:https://doi.org/10.1111/bjh.15906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Boone BA, Murthy P, Miller-Ocuin J, Doerfler WR, Ellis JT, Liang X et al. Chloroquine reduces hypercoagulability in pancreatic cancer through inhibition of neutrophil extracellular traps. BMC Cancer. 2018;18(1):678. doi:https://doi.org/10.1186/s12885-018-4584-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jung HS, Gu J, Kim JE, Nam Y, Song JW, Kim HK. Cancer cell-induced neutrophil extracellular traps promote both hypercoagulability and cancer progression. PloS one. 2019;14(4):e0216055. doi:https://doi.org/10.1371/journal.pone.0216055.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tohme S, Yazdani HO, Al-Khafaji AB, Chidi AP, Loughran P, Mowen K et al. Neutrophil extracellular traps promote the development and progression of liver metastases after surgical stress. Cancer research. 2016;76(6):1367-80. doi:https://doi.org/10.1158/0008-5472.Can-15-1591.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cools-Lartigue J, Spicer J, McDonald B, Gowing S, Chow S, Giannias B et al. Neutrophil extracellular traps sequester circulating tumor cells and promote metastasis. The Journal of clinical investigation. 2013;123(8):3446-58. doi:https://doi.org/10.1172/jci67484.

    Article  CAS  PubMed Central  Google Scholar 

  29. Eustache JH, Tohme S, Milette S, Rayes RF, Tsung A, Spicer JD. Casting a wide net on surgery: the central role of neutrophil extracellular traps. Annals of surgery. 2020;272(2):277-83. doi:https://doi.org/10.1097/sla.0000000000003586.

    Article  PubMed  Google Scholar 

  30. Qi H, Yang S, Zhang L. Neutrophil extracellular traps and endothelial dysfunction in atherosclerosis and thrombosis. Front Immunol. 2017;8:928. doi:https://doi.org/10.3389/fimmu.2017.00928.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Murdoch C, Muthana M, Coffelt SB, Lewis CE. The role of myeloid cells in the promotion of tumour angiogenesis. Nature reviews Cancer. 2008;8(8):618-31. doi:https://doi.org/10.1038/nrc2444.

    Article  CAS  PubMed  Google Scholar 

  32. Elinav E, Nowarski R, Thaiss CA, Hu B, Jin C, Flavell RA. Inflammation-induced cancer: crosstalk between tumours, immune cells and microorganisms. Nature reviews Cancer. 2013;13(11):759-71. doi:https://doi.org/10.1038/nrc3611.

    Article  CAS  PubMed  Google Scholar 

  33. Kim-Fuchs C, Le CP, Pimentel MA, Shackleford D, Ferrari D, Angst E et al. Chronic stress accelerates pancreatic cancer growth and invasion: a critical role for beta-adrenergic signaling in the pancreatic microenvironment. Brain Behav Immun. 2014;40:40-7. doi:https://doi.org/10.1016/j.bbi.2014.02.019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Le CP, Nowell CJ, Kim-Fuchs C, Botteri E, Hiller JG, Ismail H et al. Chronic stress in mice remodels lymph vasculature to promote tumour cell dissemination. Nat Commun. 2016;7:10634. doi:https://doi.org/10.1038/ncomms10634.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sloan EK, Priceman SJ, Cox BF, Yu S, Pimentel MA, Tangkanangnukul V et al. The sympathetic nervous system induces a metastatic switch in primary breast cancer. Cancer research. 2010;70(18):7042-52. doi:https://doi.org/10.1158/0008-5472.Can-10-0522.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Martin AN, Kerwin MJ, Turrentine FE, Bauer TW, Adams RB, Stukenborg GJ et al. Blood transfusion is an independent predictor of morbidity and mortality after hepatectomy. The Journal of surgical research. 2016;206(1):106-12. doi:https://doi.org/10.1016/j.jss.2016.07.013.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Ejaz A, Spolverato G, Kim Y, Margonis GA, Gupta R, Amini N et al. Impact of blood transfusions and transfusion practices on long-term outcome following hepatopancreaticobiliary surgery. Journal of gastrointestinal surgery : official journal of the Society for Surgery of the Alimentary Tract. 2015;19(5):887-96. doi:https://doi.org/10.1007/s11605-015-2776-5.

    Article  Google Scholar 

  38. Murthy BL, Thomson CS, Dodwell D, Shenoy H, Mikeljevic JS, Forman D et al. Postoperative wound complications and systemic recurrence in breast cancer. British journal of cancer. 2007;97(9):1211-7. doi:https://doi.org/10.1038/sj.bjc.6604004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bashir Mohamed K, Hansen CH, Krarup PM, Fransgård T, Madsen MT, Gögenur I. The impact of anastomotic leakage on recurrence and long-term survival in patients with colonic cancer: A systematic review and meta-analysis. European journal of surgical oncology : the journal of the European Society of Surgical Oncology and the British Association of Surgical Oncology. 2020;46(3):439-47. doi:https://doi.org/10.1016/j.ejso.2019.10.038.

    Article  Google Scholar 

  40. Im JH, Fu W, Wang H, Bhatia SK, Hammer DA, Kowalska MA et al. Coagulation facilitates tumor cell spreading in the pulmonary vasculature during early metastatic colony formation. Cancer research. 2004;64(23):8613-9. doi:https://doi.org/10.1158/0008-5472.Can-04-2078.

    Article  CAS  PubMed  Google Scholar 

  41. Kaltenmeier CT, Yazdani H, van der Windt D, Molinari M, Geller D, Tsung A et al. Neutrophil extracellular traps as a novel biomarker to predict recurrence-free and overall survival in patients with primary hepatic malignancies. HPB : the official journal of the International Hepato Pancreato Biliary Association. 2020. https://doi.org/10.1016/j.hpb.2020.06.012.

  42. Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JP et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. PLoS Med. 2009;6(7):e1000100. doi:https://doi.org/10.1371/journal.pmed.1000100.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Makito K, Matsui H, Fushimi K, Yasunaga H. Volatile versus total intravenous anesthesia for cancer prognosis in patients having digestive cancer surgery. Anesthesiology. 2020;133(4):764-73. doi:https://doi.org/10.1097/aln.0000000000003440.

    Article  CAS  PubMed  Google Scholar 

  44. Iwasaki M, Zhao H, Jaffer T, Unwith S, Benzonana L, Lian Q et al. Volatile anaesthetics enhance the metastasis related cellular signalling including CXCR2 of ovarian cancer cells. Oncotarget. 2016;7(18):26042-56. doi:https://doi.org/10.18632/oncotarget.8304.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Huang H, Benzonana LL, Zhao H, Watts HR, Perry NJ, Bevan C et al. Prostate cancer cell malignancy via modulation of HIF-1α pathway with isoflurane and propofol alone and in combination. British journal of cancer. 2014;111(7):1338-49. doi:https://doi.org/10.1038/bjc.2014.426.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Benzonana LL, Perry NJ, Watts HR, Yang B, Perry IA, Coombes C et al. Isoflurane, a commonly used volatile anesthetic, enhances renal cancer growth and malignant potential via the hypoxia-inducible factor cellular signaling pathway in vitro. Anesthesiology. 2013;119(3):593-605. doi:https://doi.org/10.1097/ALN.0b013e31829e47fd.

    Article  CAS  PubMed  Google Scholar 

  47. Luo X, Zhao H, Hennah L, Ning J, Liu J, Tu H et al. Impact of isoflurane on malignant capability of ovarian cancer in vitro. Br J Anaesth. 2015;114(5):831-9. doi:https://doi.org/10.1093/bja/aeu408.

    Article  CAS  PubMed  Google Scholar 

  48. Zhu M, Li M, Zhou Y, Dangelmajer S, Kahlert UD, Xie R et al. Isoflurane enhances the malignant potential of glioblastoma stem cells by promoting their viability, mobility in vitro and migratory capacity in vivo. Br J Anaesth. 2016;116(6):870-7. doi:https://doi.org/10.1093/bja/aew124.

    Article  CAS  PubMed  Google Scholar 

  49. Chen RM, Chen TG, Chen TL, Lin LL, Chang CC, Chang HC et al. Anti-inflammatory and antioxidative effects of propofol on lipopolysaccharide-activated macrophages. Ann N Y Acad Sci. 2005;1042:262-71. doi:https://doi.org/10.1196/annals.1338.030.

    Article  CAS  PubMed  Google Scholar 

  50. Wu KC, Yang ST, Hsia TC, Yang JS, Chiou SM, Lu CC et al. Suppression of cell invasion and migration by propofol are involved in down-regulating matrix metalloproteinase-2 and p38 MAPK signaling in A549 human lung adenocarcinoma epithelial cells. Anticancer research. 2012;32(11):4833-42.

    CAS  PubMed  Google Scholar 

  51. Mammoto T, Mukai M, Mammoto A, Yamanaka Y, Hayashi Y, Mashimo T et al. Intravenous anesthetic, propofol inhibits invasion of cancer cells. Cancer Lett. 2002;184(2):165-70. doi:https://doi.org/10.1016/s0304-3835(02)00210-0.

    Article  CAS  PubMed  Google Scholar 

  52. Chen MS, Lin WC, Yeh HT, Hu CL, Sheu SM. Propofol specifically reduces PMA-induced neutrophil extracellular trap formation through inhibition of p-ERK and HOCl. Life Sci. 2019;221:178-86. doi:https://doi.org/10.1016/j.lfs.2019.02.030.

    Article  CAS  PubMed  Google Scholar 

  53. Meier A, Chien J, Hobohm L, Patras KA, Nizet V, Corriden R. Inhibition of human neutrophil extracellular trap (NET) production by propofol and lipid emulsion. Front Pharmacol. 2019;10:323. doi:https://doi.org/10.3389/fphar.2019.00323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bar-Yosef S, Melamed R, Page GG, Shakhar G, Shakhar K, Ben-Eliyahu S. Attenuation of the tumor-promoting effect of surgery by spinal blockade in rats. Anesthesiology. 2001;94(6):1066-73. doi:https://doi.org/10.1097/00000542-200106000-00022.

    Article  CAS  PubMed  Google Scholar 

  55. Elena G, Amerio N, Ferrero P, Bay ML, Valenti J, Colucci D et al. Effects of repetitive sevoflurane anaesthesia on immune response, select biochemical parameters and organ histology in mice. Lab Anim. 2003;37(3):193-203. doi:https://doi.org/10.1258/002367703766453038.

    Article  CAS  PubMed  Google Scholar 

  56. Inada T, Hirota K, Shingu K. Intravenous anesthetic propofol suppresses prostaglandin E2 and cysteinyl leukotriene production and reduces edema formation in arachidonic acid-induced ear inflammation. J Immunotoxicol. 2015;12(3):261-5. doi:https://doi.org/10.3109/1547691x.2014.938874.

    Article  CAS  PubMed  Google Scholar 

  57. Desmond F, McCormack J, Mulligan N, Stokes M, Buggy DJ. Effect of anaesthetic technique on immune cell infiltration in breast cancer: a follow-up pilot analysis of a prospective, randomised, investigator-masked study. Anticancer research. 2015;35(3):1311-9.

    PubMed  Google Scholar 

  58. Inada T, Yamanouchi Y, Jomura S, Sakamoto S, Takahashi M, Kambara T et al. Effect of propofol and isoflurane anaesthesia on the immune response to surgery. Anaesthesia. 2004;59(10):954-9. doi:https://doi.org/10.1111/j.1365-2044.2004.03837.x.

    Article  CAS  PubMed  Google Scholar 

  59. Ke JJ, Zhan J, Feng XB, Wu Y, Rao Y, Wang YL. A comparison of the effect of total intravenous anaesthesia with propofol and remifentanil and inhalational anaesthesia with isoflurane on the release of pro- and anti-inflammatory cytokines in patients undergoing open cholecystectomy. Anaesth Intensive Care. 2008;36(1):74-8. doi:https://doi.org/10.1177/0310057x0803600113.

    Article  CAS  PubMed  Google Scholar 

  60. Ferrell JK, Cattano D, Brown RE, Patel CB, Karni RJ. The effects of anesthesia on the morphoproteomic expression of head and neck squamous cell carcinoma: a pilot study. Translational research : the journal of laboratory and clinical medicine. 2015;166(6):674-82. doi:https://doi.org/10.1016/j.trsl.2015.09.001.

    Article  CAS  Google Scholar 

  61. Liu S, Gu X, Zhu L, Wu G, Zhou H, Song Y et al. Effects of propofol and sevoflurane on perioperative immune response in patients undergoing laparoscopic radical hysterectomy for cervical cancer. Medicine. 2016;95(49):e5479. doi:https://doi.org/10.1097/md.0000000000005479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Yan T, Zhang GH, Wang BN, Sun L, Zheng H. Effects of propofol/remifentanil-based total intravenous anesthesia versus sevoflurane-based inhalational anesthesia on the release of VEGF-C and TGF-β and prognosis after breast cancer surgery: a prospective, randomized and controlled study. BMC anesthesiology. 2018;18(1):131. doi:https://doi.org/10.1186/s12871-018-0588-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Wu ZF, Lee MS, Wong CS, Lu CH, Huang YS, Lin KT et al. Propofol-based total intravenous anesthesia is associated with better survival than desflurane anesthesia in colon cancer surgery. Anesthesiology. 2018;129(5):932-41. doi:https://doi.org/10.1097/aln.0000000000002357.

    Article  CAS  PubMed  Google Scholar 

  64. Lai HC, Lee MS, Lin C, Lin KT, Huang YH, Wong CS et al. Propofol-based total intravenous anaesthesia is associated with better survival than desflurane anaesthesia in hepatectomy for hepatocellular carcinoma: a retrospective cohort study. Br J Anaesth. 2019;123(2):151-60. doi:https://doi.org/10.1016/j.bja.2019.04.057.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lai HC, Lee MS, Lin KT, Chan SM, Chen JY, Lin YT et al. Propofol-based total intravenous anesthesia is associated with better survival than desflurane anesthesia in intrahepatic cholangiocarcinoma surgery. Medicine. 2019;98(51):e18472. doi:https://doi.org/10.1097/md.0000000000018472.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kim MH, Kim DW, Kim JH, Lee KY, Park S, Yoo YC. Does the type of anesthesia really affect the recurrence-free survival after breast cancer surgery? Oncotarget. 2017;8(52):90477-87. doi:https://doi.org/10.18632/oncotarget.21014.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Oh TK, Kim K, Jheon S, Lee J, Do SH, Hwang JW et al. Long-term oncologic outcomes for patients undergoing volatile versus intravenous anesthesia for non-small cell lung cancer surgery: a retrospective propensity matching analysis. Cancer control : journal of the Moffitt Cancer Center. 2018;25(1):1073274818775360. doi:https://doi.org/10.1177/1073274818775360.

    Article  Google Scholar 

  68. Oh TK, Kim HH, Jeon YT. Retrospective analysis of 1-year mortality after gastric cancer surgery: total intravenous anesthesia versus volatile anesthesia. Acta anaesthesiologica Scandinavica. 2019;63(9):1169-77. doi:https://doi.org/10.1111/aas.13414.

    Article  CAS  PubMed  Google Scholar 

  69. Sessler DI, Pei L, Huang Y, Fleischmann E, Marhofer P, Kurz A et al. Recurrence of breast cancer after regional or general anaesthesia: a randomised controlled trial. Lancet. 2019;394(10211):1807-15. doi:https://doi.org/10.1016/s0140-6736(19)32313-x.

    Article  CAS  PubMed  Google Scholar 

  70. Tavare AN, Perry NJ, Benzonana LL, Takata M, Ma D. Cancer recurrence after surgery: direct and indirect effects of anesthetic agents. International journal of cancer Journal international du cancer. 2012;130(6):1237-50. doi:https://doi.org/10.1002/ijc.26448.

    Article  CAS  PubMed  Google Scholar 

  71. Huitink JM, Heimerikxs M, Nieuwland M, Loer SA, Brugman W, Velds A et al. Volatile anesthetics modulate gene expression in breast and brain tumor cells. Anesthesia and analgesia. 2010;111(6):1411-5. doi:https://doi.org/10.1213/ANE.0b013e3181fa3533.

    Article  CAS  PubMed  Google Scholar 

  72. Markovic-Bozic J, Karpe B, Potocnik I, Jerin A, Vranic A, Novak-Jankovic V. Effect of propofol and sevoflurane on the inflammatory response of patients undergoing craniotomy. BMC anesthesiology. 2016;16:18. doi:https://doi.org/10.1186/s12871-016-0182-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Stollings LM, Jia LJ, Tang P, Dou H, Lu B, Xu Y. Immune modulation by volatile anesthetics. Anesthesiology. 2016;125(2):399-411. doi:https://doi.org/10.1097/aln.0000000000001195.

    Article  CAS  PubMed  Google Scholar 

  74. Melamed R, Bar-Yosef S, Shakhar G, Shakhar K, Ben-Eliyahu S. Suppression of natural killer cell activity and promotion of tumor metastasis by ketamine, thiopental, and halothane, but not by propofol: mediating mechanisms and prophylactic measures. Anesthesia and analgesia. 2003;97(5):1331-9. doi:https://doi.org/10.1213/01.ane.0000082995.44040.07.

    Article  CAS  PubMed  Google Scholar 

  75. Lee JH, Kang SH, Kim Y, Kim HA, Kim BS. Effects of propofol-based total intravenous anesthesia on recurrence and overall survival in patients after modified radical mastectomy: a retrospective study. Korean journal of anesthesiology. 2016;69(2):126-32. doi:https://doi.org/10.4097/kjae.2016.69.2.126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Zheng X, Wang Y, Dong L, Zhao S, Wang L, Chen H et al. Effects of propofol-based total intravenous anesthesia on gastric cancer: a retrospective study. OncoTargets and therapy. 2018;11:1141-8. doi:https://doi.org/10.2147/ott.S156792.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Lai HC, Lee MS, Lin KT, Huang YH, Chen JY, Lin YT et al. Propofol-based total intravenous anesthesia is associated with better survival than desflurane anesthesia in robot-assisted radical prostatectomy. PloS one. 2020;15(3):e0230290. doi:https://doi.org/10.1371/journal.pone.0230290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Lee CJ, Tai YT, Lin YL, Chen RM. Molecular mechanisms of propofol-involved suppression of no biosynthesis and inducible iNOS gene expression in LPS-stimulated macrophage-like raw 264.7 cells. Shock (Augusta, Ga). 2010;33(1):93-100. doi:https://doi.org/10.1097/SHK.0b013e3181a6eaf5.

    Article  CAS  Google Scholar 

  79. Chang CY, Wu MY, Chien YJ, Su IM, Wang SC, Kao MC. Anesthesia and long-term oncological outcomes: a systematic review and meta-analysis. Anesthesia and analgesia. 2020. https://doi.org/10.1213/ane.0000000000005237.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Douin.

Ethics declarations

Conflict of Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Selby, L.V., Fernandez-Bustamante, A., Ejaz, A. et al. Association Between Anesthesia Delivered During Tumor Resection and Cancer Survival: a Systematic Review of a Mixed Picture with Constant Themes. J Gastrointest Surg 25, 2129–2141 (2021). https://doi.org/10.1007/s11605-021-05037-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11605-021-05037-7

Keywords

Navigation