Skip to main content
Log in

The Role of the Intestinal Microbiome on Colorectal Cancer Pathogenesis and its Recurrence Following Surgery

  • Review Article
  • Published:
Journal of Gastrointestinal Surgery

Abstract

Colorectal cancer is the result of multiple genetic mutations that drive normal cells to adenoma and then carcinoma. Recent technology has evolved to allow for an in-depth examination of the microbiota and it has become clear that many components of the intestinal microbiome play a role in promoting carcinogenesis. This review aims to describe the potential mechanisms that lead to the dysbiosis that initiates tumor formation and that influence the development of cancer recurrence following surgical resection. We further discuss how manipulation of the microbiome may be a future novel strategy to prevent both primary and secondary colorectal cancer. While we discuss how bacterial communities and individual strains can promote cancer, the microbiome is individualized, dynamic, and complex, and our understanding of its role in carcinogenesis is still in its infancy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Rawla P, Sunkara T, Barsouk A. Epidemiology of colorectal cancer: incidence, mortality, survival, and risk factors. Prz Gastroenterol [Internet] 2019;14(2):89–103. Available from: http://www.ncbi.nlm.nih.gov/pubmed/31616522

  2. Fearon ER, Vogelstein B. A genetic model for colorectal tumorigenesis. Cell [Internet] 1990;61(5):759–67. Available from: http://www.ncbi.nlm.nih.gov/pubmed/2188735

  3. Johnson CM, Wei C, Ensor JE, et al. Meta-analyses of colorectal cancer risk factors. Cancer Causes Control [Internet] 2013;24(6):1207–22. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23563998

  4. Scanlan PD, Shanahan F, Clune Y, et al. Culture-independent analysis of the gut microbiota in colorectal cancer and polyposis. Environ Microbiol [Internet] 2008;10(3):789–98. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18237311

  5. Hiergeist A, Gläsner J, Reischl U, Gessner A. Analyses of Intestinal Microbiota: Culture versus Sequencing. ILAR J [Internet] 2015;56(2):228–40. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26323632

  6. Rubinstein MR, Wang X, Liu W, Hao Y, Cai G, Han YW. Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/β-catenin signaling via its FadA adhesin. Cell Host Microbe [Internet] 2013;14(2):195–206. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23954158

  7. Thursby E, Juge N. Introduction to the human gut microbiota. Biochem J [Internet] 2017;474(11):1823–36. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28512250

  8. Sears CL, Pardoll DM. Perspective: alpha-bugs, their microbial partners, and the link to colon cancer. J Infect Dis [Internet] 2011;203(3):306–11. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21208921

  9. Tjalsma H, Boleij A, Marchesi JR, Dutilh BE. A bacterial driver-passenger model for colorectal cancer: beyond the usual suspects. Nat Rev. Microbiol [Internet] 2012;10(8):575–82. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22728587

  10. Zorron Cheng Tao Pu L, Yamamoto K, Honda T, et al. Microbiota profile is different for early and invasive colorectal cancer and is consistent throughout the colon. J Gastroenterol Hepatol [Internet] 2020;35(3):433–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/31609493

  11. Kinross J, Mirnezami R, Alexander J, et al. A prospective analysis of mucosal microbiome-metabonome interactions in colorectal cancer using a combined MAS 1HNMR and metataxonomic strategy. Sci Rep [Internet] 2017;7(1):8979. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28827587

  12. Abdulamir AS, Hafidh RR, Abu Bakar F. The association of Streptococcus bovis/gallolyticus with colorectal tumors: the nature and the underlying mechanisms of its etiological role. J Exp Clin Cancer Res [Internet] 2011;30:11. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21247505

  13. Kostic AD, Gevers D, Pedamallu CS, et al. Genomic analysis identifies association of Fusobacterium with colorectal carcinoma. Genome Res [Internet] 2012;22(2):292–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22009990

  14. Mima K, Nishihara R, Qian ZR, et al. Fusobacterium nucleatum in colorectal carcinoma tissue and patient prognosis. Gut [Internet] 2016;65(12):1973–80. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26311717

  15. Nosho K, Sukawa Y, Adachi Y, et al. Association of Fusobacterium nucleatum with immunity and molecular alterations in colorectal cancer. World J Gastroenterol [Internet] 2016;22(2):557–66. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26811607

  16. Housseau F, Sears CL. Enterotoxigenic Bacteroides fragilis (ETBF)-mediated colitis in Min (Apc+/-) mice: a human commensal-based murine model of colon carcinogenesis. Cell Cycle [Internet] 2010;9(1):3–5. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20009569

  17. Balamurugan R, Rajendiran E, George S, Samuel GV, Ramakrishna BS. Real-time polymerase chain reaction quantification of specific butyrate-producing bacteria, Desulfovibrio and Enterococcus faecalis in the feces of patients with colorectal cancer. J Gastroenterol Hepatol [Internet] 2008;23(8 Pt 1):1298–303. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18624900

  18. Wang X, Huycke MM. Extracellular superoxide production by Enterococcus faecalis promotes chromosomal instability in mammalian cells. Gastroenterology [Internet] 2007;132(2):551–61. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17258726

  19. Huycke MM, Abrams V, Moore DR. Enterococcus faecalis produces extracellular superoxide and hydrogen peroxide that damages colonic epithelial cell DNA. Carcinogenesis [Internet] 2002;23(3):529–36. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11895869

  20. Cuevas-Ramos G, Petit CR, Marcq I, Boury M, Oswald E, Nougayrède J-P. Escherichia coli induces DNA damage in vivo and triggers genomic instability in mammalian cells. Proc Natl Acad Sci U S A [Internet] 2010;107(25):11537–42. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20534522

  21. Cougnoux A, Dalmasso G, Martinez R, et al. Bacterial genotoxin colibactin promotes colon tumour growth by inducing a senescence-associated secretory phenotype. Gut [Internet] 2014;63(12):1932–42. http://www.ncbi.nlm.nih.gov/pubmed/24658599

  22. Turnbaugh PJ, Hamady M, Yatsunenko T, et al. A core gut microbiome in obese and lean twins. Nature [Internet] 2009;457(7228):480–4. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19043404

  23. Moreno-Navarrete JM, Ortega F, Serino M, et al. Circulating lipopolysaccharide-binding protein (LBP) as a marker of obesity-related insulin resistance. Int J Obes [Internet] 2012;36(11):1442–9. Available from: http://www.nature.com/articles/ijo2011256

  24. Kang M, Edmundson P, Araujo-Perez F, McCoy AN, Galanko J, Keku TO. Association of plasma endotoxin, inflammatory cytokines and risk of colorectal adenomas. BMC Cancer [Internet] 2013;13:91. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23442743

  25. So D, Whelan K, Rossi M, et al. Dietary fiber intervention on gut microbiota composition in healthy adults: a systematic review and meta-analysis. Am J Clin Nutr [Internet] 2018;107(6):965–83. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29757343

  26. Feng Q, Liang S, Jia H, et al. Gut microbiome development along the colorectal adenoma-carcinoma sequence. Nat Commun [Internet] 2015;6:6528. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25758642

  27. Jeffery M, Hickey BE, Hider PN. Follow-up strategies for patients treated for non-metastatic colorectal cancer. Cochrane database Syst Rev. [Internet] 2007;(1):CD002200. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17253476

  28. Hale JE. Viable intraluminal tumour cells and local/regional tumour growth in experimental colon cancer. Ann R Coll Surg Engl [Internet] 1989;71(4):271. Available from: http://www.ncbi.nlm.nih.gov/pubmed/2774458

  29. Kluger Y, Galili Y, Yossiphov J, Shnaper A, Goldman G, Rabau M. Model of implantation of tumor cells simulating recurrence in colonic anastomosis in mice. Dis Colon Rectum [Internet] 1998;41(12):1506–10. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9860330

  30. Umpleby HC, Fermor B, Symes MO, Williamson RC. Viability of exfoliated colorectal carcinoma cells. Br J Surg [Internet] 1984;71(9):659–63. Available from: http://www.ncbi.nlm.nih.gov/pubmed/6478151

  31. Fermor B, Umpleby HC, Lever J V, Symes MO, Williamson RC. Proliferative and metastatic potential of exfoliated colorectal cancer cells. J Natl Cancer Inst [Internet] 1986;76(2):347–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/3456069

  32. Hasegawa J, Nishimura J, Yamamoto S, et al. Exfoliated malignant cells at the anastomosis site in colon cancer surgery: the impact of surgical bowel occlusion and intraluminal cleaning. Int J Colorectal Dis [Internet] 2011;26(7):875–80. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21302117

  33. VINK M. Local recurrence of cancer in the large bowel: the role of implantation metastases and bowel disinfection. Br J Surg [Internet] 1954;41(168):431–3. Available from: http://www.ncbi.nlm.nih.gov/pubmed/13126492

  34. COHN I. The influence of antibiotics on the spread of tumors of the colon: an experimental study. Ann Surg 1960;151:917–29. Available from: http://www.ncbi.nlm.nih.gov/pubmed/13811041

  35. Olivas AD, Shogan BD, Valuckaite V, et al. Intestinal tissues induce an SNP mutation in Pseudomonas aeruginosa that enhances its virulence: possible role in anastomotic leak. PLoS One [Internet] 2012;7(8):e44326. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22952955

  36. Shogan BD, Smith DP, Christley S, Gilbert JA, Zaborina O, Alverdy JC. Intestinal anastomotic injury alters spatially defined microbiome composition and function. Microbiome [Internet] 2014;2:35. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25250176

  37. Shogan BD, Belogortseva N, Luong PM, et al. Collagen degradation and MMP9 activation by Enterococcus faecalis contribute to intestinal anastomotic leak. Sci Transl Med [Internet] 2015;7(286):286ra68. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25947163

  38. Hyoju SK, Adriaansens C, Wienholts K, et al. Low-fat/high-fibre diet prehabilitation improves anastomotic healing via the microbiome: an experimental model. Br J Surg [Internet] 2019;Available from: http://www.ncbi.nlm.nih.gov/pubmed/31879948

  39. Meyerhardt JA, Niedzwiecki D, Hollis D, et al. Association of dietary patterns with cancer recurrence and survival in patients with stage III colon cancer. JAMA [Internet] 2007;298(7):754–64. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17699009

  40. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature [Internet] 2006;444(7122):1027–31. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17183312

  41. Gaines S, van Praagh JB, Williamson AJ, et al. Western Diet Promotes Intestinal Colonization by Collagenolytic Microbes and Promotes Tumor Formation Following Colorectal Surgery. Gastroenterology [Internet] 2019;Available from: https://linkinghub.elsevier.com/retrieve/pii/S0016508519414716

  42. Jacobson RA, Wienholts K, Williamson AJ, et al. Enterococcus faecalis exploits the human fibrinolytic system to drive excess collagenolysis: implications in gut healing and identification of druggable targets. Am J Physiol Gastrointest Liver Physiol [Internet] 2020;318(1):G1–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/31604031

  43. He X, Lee B, Jiang Y. Cell-ECM Interactions in Tumor Invasion. Adv Exp Med Biol [Internet] 2016;936:73–91. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27739043

  44. Belogortseva N, Krezalek M, Guyton K, et al. Media from macrophages co-incubated with Enterococcus faecalis induces epithelial cell monolayer reassembly and altered cell morphology. PLoS One [Internet] 2017;12(8):e0182825. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28793333

  45. Brabletz T, Hlubek F, Spaderna S, et al. Invasion and metastasis in colorectal cancer: epithelial-mesenchymal transition, mesenchymal-epithelial transition, stem cells and beta-catenin. Cells Tissues Organs [Internet] 2005;179(1–2):56–65. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15942193

  46. Lin C-Y, Tsai P-H, Kandaswami CC, et al. Matrix metalloproteinase-9 cooperates with transcription factor Snail to induce epithelial-mesenchymal transition. Cancer Sci [Internet] 2011;102(4):815–27. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21219539

  47. Dragutinović V V, Radonjić N V, Petronijević ND, et al. Matrix metalloproteinase-2 (MMP-2) and − 9 (MMP-9) in preoperative serum as independent prognostic markers in patients with colorectal cancer. Mol Cell Biochem [Internet] 2011;355(1–2):173–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21541674

  48. Hattori N, Niwa T, Ishida T, et al. Antibiotics suppress colon tumorigenesis through inhibition of aberrant DNA methylation in an azoxymethane and dextran sulfate sodium colitis model. Cancer Sci [Internet] 2019;110(1):147–56. Available from: http://www.ncbi.nlm.nih.gov/pubmed/30443963

  49. Tanaka Y, Ito S, Isobe K. Vancomycin-sensitive bacteria trigger development of colitis-associated colon cancer by attracting neutrophils. Sci Rep [Internet] 2016;6:23920. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27050089

  50. Trépanier M, Minnella EM, Paradis T, et al. Improved Disease-free Survival After Prehabilitation for Colorectal Cancer Surgery. Ann Surg [Internet] 2019;270(3):493–501. http://www.ncbi.nlm.nih.gov/pubmed/31318793

Download references

Funding

Internal departmental funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin D. Shogan.

Ethics declarations

Conflict of Interest

None declared.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vigneswaran, J., Shogan, B.D. The Role of the Intestinal Microbiome on Colorectal Cancer Pathogenesis and its Recurrence Following Surgery. J Gastrointest Surg 24, 2349–2356 (2020). https://doi.org/10.1007/s11605-020-04694-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11605-020-04694-4

Keywords

Navigation