Skip to main content
Log in

SSAT State-of-the-Art Conference: Advancements in the Microbiome

  • Original Article
  • Published:
Journal of Gastrointestinal Surgery Aims and scope

Abstract

The microbiome plays a major role in human physiology by influencing obesity, inducing inflammation, and impacting cancer therapies. During the 60th Annual Meeting of the Society of the Alimentary Tract (SSAT) at the State-of-the-Art Conference, experts in the field discussed the influence of the microbiome. This paper is a summary of the influence of the microbiome on obesity, inflammatory bowel disease, pancreatic cancer, cancer therapies, and gastrointestinal optimization. This review shows how the microbiome plays an important role in the development of diseases and surgical complications. Future studies are needed in targeting the gut microbiome to develop individualized therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Turnbaugh, P.J., et al., A core gut microbiome in obese and lean twins. Nature, 2009. 457(7228): p. 480–4.

    Article  CAS  PubMed  Google Scholar 

  2. Belkaid, Y. and T.W. Hand, Role of the microbiota in immunity and inflammation. Cell, 2014. 157(1): p. 121–141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Viaud, S., et al., The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide. Science, 2013. 342(6161): p. 971–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Stark, C.M., et al., Antibiotic and acid-suppression medications during early childhood are associated with obesity. Gut, 2019. 68(1): p. 62.

    Article  CAS  PubMed  Google Scholar 

  5. Martens, E.C., Fibre for the future. Nature, 2016. 529: p. 158.

    Article  CAS  PubMed  Google Scholar 

  6. Goodrich, J.K., et al., Human genetics shape the gut microbiome. Cell, 2014. 159(4): p. 789–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rothschild, D., et al., Environment dominates over host genetics in shaping human gut microbiota. Nature, 2018. 555: p. 210.

    Article  CAS  PubMed  Google Scholar 

  8. Vidal, A.C., et al., Associations between antibiotic exposure during pregnancy, birth weight and aberrant methylation at imprinted genes among offspring. Int J Obes (Lond), 2013. 37(7): p. 907–13.

    Article  CAS  Google Scholar 

  9. Stanislawski, M.A., et al., Gut Microbiota in the First 2 Years of Life and the Association with Body Mass Index at Age 12 in a Norwegian Birth Cohort. mBio, 2018. 9(5): p. e01751–18.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Azad, M.B., et al., Infant antibiotic exposure and the development of childhood overweight and central adiposity. Int J Obes (Lond), 2014. 38(10): p. 1290–8.

    Article  CAS  Google Scholar 

  11. Cox, L.M. and M.J. Blaser, Antibiotics in early life and obesity. Nat Rev Endocrinol, 2015. 11(3): p. 182–90.

    Article  PubMed  Google Scholar 

  12. Thaiss, C.A., et al., Microbiota Diurnal Rhythmicity Programs Host Transcriptome Oscillations. Cell, 2016. 167(6): p. 1495–1510.e12.

    Article  CAS  PubMed  Google Scholar 

  13. Thaiss, Christoph A., et al., Transkingdom Control of Microbiota Diurnal Oscillations Promotes Metabolic Homeostasis. Cell, 2014. 159(3): p. 514–529.

    Article  CAS  PubMed  Google Scholar 

  14. Zarrinpar, A., et al., Diet and Feeding Pattern Affect the Diurnal Dynamics of the Gut Microbiome. Cell Metabolism, 2014. 20(6): p. 1006–1017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Thaiss, C.A., et al., Persistent microbiome alterations modulate the rate of post-dieting weight regain. Nature, 2016. 540: p. 544.

    Article  CAS  PubMed  Google Scholar 

  16. Fragiadakis, G.K., et al., Links between environment, diet, and the hunter-gatherer microbiome. Gut Microbes, 2018: p. 1–12.

  17. Sonnenburg, E.D., et al., Diet-induced extinctions in the gut microbiota compound over generations. Nature, 2016. 529(7585): p. 212–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. David, L.A., et al., Diet rapidly and reproducibly alters the human gut microbiome. Nature, 2013. 505: p. 559.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Griffin, N.W., et al., Prior Dietary Practices and Connections to a Human Gut Microbial Metacommunity Alter Responses to Diet Interventions. Cell Host Microbe, 2017. 21(1): p. 84–96.

    Article  CAS  PubMed  Google Scholar 

  20. Wu, G.D., et al., Linking Long-Term Dietary Patterns with Gut Microbial Enterotypes. Science, 2011. 334(6052): p. 105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Singh, R.K., et al., Influence of diet on the gut microbiome and implications for human health. Journal of Translational Medicine, 2017. 15(1): p. 73.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Caesar, R., et al., Crosstalk between Gut Microbiota and Dietary Lipids Aggravates WAT Inflammation through TLR Signaling. Cell Metabolism, 2015. 22(4): p. 658–668.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chassaing, B., et al., Dietary emulsifiers impact the mouse gut microbiota promoting colitis and metabolic syndrome. Nature, 2015. 519(7541): p. 92–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Suez, J., et al., Artificial sweeteners induce glucose intolerance by altering the gut microbiota. Nature, 2014. 514(7521): p. 181–6.

    Article  CAS  PubMed  Google Scholar 

  25. van der Beek, C.M., et al., The prebiotic inulin improves substrate metabolism and promotes short-chain fatty acid production in overweight to obese men. Metabolism, 2018. 87: p. 25–35.

    Article  PubMed  CAS  Google Scholar 

  26. Nicolucci, A.C., et al., Prebiotics Reduce Body Fat and Alter Intestinal Microbiota in Children Who Are Overweight or With Obesity. Gastroenterology, 2017. 153(3): p. 711–722.

    Article  PubMed  Google Scholar 

  27. Torres-Fuentes, C., et al., The microbiota-gut-brain axis in obesity. The Lancet Gastroenterology & Hepatology, 2017. 2(10): p. 747–756.

    Article  Google Scholar 

  28. den Besten, G., et al., Gut-derived short-chain fatty acids are vividly assimilated into host carbohydrates and lipids. Am J Physiol Gastrointest Liver Physiol, 2013. 305(12): p. G900–10.

    Article  CAS  Google Scholar 

  29. Kootte, R.S., et al., Improvement of Insulin Sensitivity after Lean Donor Feces in Metabolic Syndrome Is Driven by Baseline Intestinal Microbiota Composition. Cell Metab, 2017. 26(4): p. 611–619.e6.

    Article  CAS  PubMed  Google Scholar 

  30. Cani, P.D. and W.M. de Vos, Next-Generation Beneficial Microbes: The Case of Akkermansia muciniphila. Frontiers in Microbiology, 2017. 8(1765).

  31. Santacruz, A., et al., Gut microbiota composition is associated with body weight, weight gain and biochemical parameters in pregnant women. Br J Nutr, 2010. 104(1): p. 83–92.

    Article  CAS  PubMed  Google Scholar 

  32. Ilhan, Z.E., et al., Distinctive microbiomes and metabolites linked with weight loss after gastric bypass, but not gastric banding. The Isme Journal, 2017. 11: p. 2047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bouter, K., et al., Differential metabolic effects of oral butyrate treatment in lean versus metabolic syndrome subjects. Clinical and translational gastroenterology, 2018. 9(5): p. 155–155.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Hellmann, M.D., et al., Nivolumab plus Ipilimumab in Lung Cancer with a High Tumor Mutational Burden. N Engl J Med, 2018. 378(22): p. 2093–2104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hibberd, A.A., et al., Probiotic or synbiotic alters the gut microbiota and metabolism in a randomised controlled trial of weight management in overweight adults. Beneficial Microbes, 2018. 10(2): p. 121–135.

    Article  PubMed  Google Scholar 

  36. Ferrarese R, Ceresola E.R., Preti A, Canducci F, Probiotics, prebiotics and synbiotics for weight loss and metabolic syndrome in the microbiome era. European Review for medical and Pharmacological Sciences, 2018. 22(21): p. 7588–7605.

    CAS  PubMed  Google Scholar 

  37. Seifarth, C., B. Schehler, and H.J. Schneider, Effectiveness of metformin on weight loss in non-diabetic individuals with obesity. Exp Clin Endocrinol Diabetes, 2013. 121(1): p. 27–31.

    CAS  PubMed  Google Scholar 

  38. Pryor, R. and F. Cabreiro, Repurposing metformin: an old drug with new tricks in its binding pockets. Biochemical Journal, 2015. 471(3): p. 307.

    Article  CAS  PubMed  Google Scholar 

  39. Zheng, J., et al., Prebiotic Mannan-Oligosaccharides Augment the Hypoglycemic Effects of Metformin in Correlation with Modulating Gut Microbiota. Journal of Agricultural and Food Chemistry, 2018. 66(23): p. 5821–5831.

    Article  CAS  PubMed  Google Scholar 

  40. Liou, A.P., et al., Conserved Shifts in the Gut Microbiota Due to Gastric Bypass Reduce Host Weight and Adiposity. Science Translational Medicine, 2013. 5(178): p. 178ra41.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Tremaroli, V., et al., Roux-en-Y Gastric Bypass and Vertical Banded Gastroplasty Induce Long-Term Changes on the Human Gut Microbiome Contributing to Fat Mass Regulation. Cell Metabolism, 2015. 22(2): p. 228–238.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sutton, E.F., et al., Early Time-Restricted Feeding Improves Insulin Sensitivity, Blood Pressure, and Oxidative Stress Even without Weight Loss in Men with Prediabetes. Cell Metab, 2018. 27(6): p. 1212–1221.e3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kaplan, L.M. and J. Brancale, Eat Well, or Get Roommates Who Do. Cell Host & Microbe, 2017. 21(2): p. 123–125.

    Article  CAS  Google Scholar 

  44. Vrieze, A., et al., Transfer of Intestinal Microbiota From Lean Donors Increases Insulin Sensitivity in Individuals With Metabolic Syndrome. Gastroenterology, 2012. 143(4): p. 913–916.e7.

    Article  CAS  PubMed  Google Scholar 

  45. Zeevi, D., et al., Personalized Nutrition by Prediction of Glycemic Responses. Cell, 2015. 163(5): p. 1079–1094.

    Article  CAS  PubMed  Google Scholar 

  46. Russell, W., An address on a characteristic organism of cancer. Br. Med. J. , 1980. 2: p. 1356–1360

    Article  Google Scholar 

  47. Eck, D.L., et al., Effects of immediate reconstruction on adjuvant chemotherapy in breast cancer patients. Ann Plast Surg, 2015. 74 Suppl 4: p. S201–3.

    Article  CAS  PubMed  Google Scholar 

  48. Gao, P., et al., Impact of timing of adjuvant chemotherapy on survival in stage III colon cancer: a population-based study. BMC Cancer, 2018. 18(1): p. 234.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Arhi, C.S., et al., Complications after discharge and delays in adjuvant chemotherapy following colonic resection: a cohort study of linked primary and secondary care data. Colorectal Dis, 2019. 21(3): p. 307–314.

    CAS  PubMed  Google Scholar 

  50. Ortega, G., et al., An evaluation of surgical site infections by wound classification system using the ACS-NSQIP. J Surg Res, 2012. 174(1): p. 33–8.

    Article  PubMed  Google Scholar 

  51. Krezalek, M.A., et al., Can Methicillin-resistant Staphylococcus aureus Silently Travel From the Gut to the Wound and Cause Postoperative Infection? Modeling the "Trojan Horse Hypothesis". Ann Surg, 2018. 267(4): p. 749–758.

    Article  PubMed  Google Scholar 

  52. Roy, S., et al., Staphylococcus aureus Biofilm Infection Compromises Wound Healing by Causing Deficiencies in Granulation Tissue Collagen. Ann Surg, 2019.

  53. Cancer Facts & Figures 2019. American Cancer Society. 2019.

  54. Shogan, B.D., et al., Collagen degradation and MMP9 activation by Enterococcus faecalis contribute to intestinal anastomotic leak. Sci Transl Med, 2015. 7(286): p. 286ra68.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Van Cutsem, E., et al., Cetuximab and chemotherapy as initial treatment for metastatic colorectal cancer. N Engl J Med, 2009. 360(14): p. 1408–17.

    Article  PubMed  Google Scholar 

  56. Prahallad, A., et al., Unresponsiveness of colon cancer to BRAF(V600E) inhibition through feedback activation of EGFR. Nature, 2012. 483(7387): p. 100–3.

    Article  CAS  PubMed  Google Scholar 

  57. Wallace, B.D., et al., Alleviating cancer drug toxicity by inhibiting a bacterial enzyme. Science, 2010. 330(6005): p. 831–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Gui, Q.F., et al., Well-balanced commensal microbiota contributes to anti-cancer response in a lung cancer mouse model. Genet Mol Res, 2015. 14(2): p. 5642–51.

    Article  PubMed  Google Scholar 

  59. Geller, L.T., et al., Potential role of intratumor bacteria in mediating tumor resistance to the chemotherapeutic drug gemcitabine. Science, 2017. 357(6356): p. 1156–1160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Stockis, J., R. Roychoudhuri, and T.Y.F. Halim, Regulation of regulatory T cells in cancer. Immunology, 2019.

  61. Postow, M.A., et al., Nivolumab and ipilimumab versus ipilimumab in untreated melanoma. N Engl J Med, 2015. 372(21): p. 2006–17.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Motzer, R.J., et al., Nivolumab plus Ipilimumab versus Sunitinib in Advanced Renal-Cell Carcinoma. N Engl J Med, 2018. 378(14): p. 1277–1290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Forde, P.M., et al., Neoadjuvant PD-1 Blockade in Resectable Lung Cancer. N Engl J Med, 2018. 378(21): p. 1976–1986.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Rescigno, M., Intestinal microbiota and its effects on the immune system. Cell Microbiol, 2014. 16(7): p. 1004–13.

    Article  CAS  PubMed  Google Scholar 

  65. Tomkovich, S. and C. Jobin, Microbiota and host immune responses: a love-hate relationship. Immunology, 2016. 147(1): 1–10.

    Article  CAS  PubMed  Google Scholar 

  66. Vetizou, M., et al., Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science, 2015. 350(6264): p. 1079–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Sivan, A., et al., Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science, 2015. 350(6264): p. 1084–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Gopalakrishnan, V., et al., Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science, 2018. 359(6371): p. 97–103.

    Article  CAS  PubMed  Google Scholar 

  69. Flint, H.J., et al., The role of the gut microbiota in nutrition and health. Nat Rev Gastroenterol Hepatol, 2012. 9(10): p. 577–89.

    Article  CAS  PubMed  Google Scholar 

  70. Claesson, M.J., et al., Composition, variability, and temporal stability of the intestinal microbiota of the elderly. Proc Natl Acad Sci U S A, 2011. 108 Suppl 1: p. 4586–91.

    Article  CAS  PubMed  Google Scholar 

  71. Loftus, E.V., Jr., Clinical epidemiology of inflammatory bowel disease: Incidence, prevalence, and environmental influences. Gastroenterology, 2004. 126(6): p. 1504–17.

    Article  PubMed  Google Scholar 

  72. Jostins, L., et al., Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature, 2012. 491(7422): p. 119–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Khor, B., A. Gardet, and R.J. Xavier, Genetics and pathogenesis of inflammatory bowel disease. Nature, 2011. 474(7351): p. 307–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Halme, L., et al., Family and twin studies in inflammatory bowel disease. World J Gastroenterol, 2006. 12(23): p. 3668–72.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Sartor, R.B., Microbial influences in inflammatory bowel diseases. Gastroenterology, 2008. 134(2): p. 577–94.

    Article  CAS  PubMed  Google Scholar 

  76. Ogura, Y., et al., A frameshift mutation in NOD2 associated with susceptibility to Crohn's disease. Nature, 2001. 411(6837): p. 603–6.

    Article  CAS  PubMed  Google Scholar 

  77. Strober, W., I. Fuss, and P. Mannon, The fundamental basis of inflammatory bowel disease. J Clin Invest, 2007. 117(3): p. 514–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Sartor, R.B., Therapeutic manipulation of the enteric microflora in inflammatory bowel diseases: antibiotics, probiotics, and prebiotics. Gastroenterology, 2004. 126(6): p. 1620–33.

    Article  PubMed  Google Scholar 

  79. Kang, S., et al., Dysbiosis of fecal microbiota in Crohn's disease patients as revealed by a custom phylogenetic microarray. Inflamm Bowel Dis, 2010. 16(12): p. 2034–42.

    Article  PubMed  Google Scholar 

  80. Martinez, C., et al., Unstable composition of the fecal microbiota in ulcerative colitis during clinical remission. Am J Gastroenterol, 2008. 103(3): p. 643–8.

    Article  PubMed  Google Scholar 

  81. Sepehri, S., et al., Microbial diversity of inflamed and noninflamed gut biopsy tissues in inflammatory bowel disease. Inflamm Bowel Dis, 2007. 13(6): p. 675–83.

    Article  PubMed  Google Scholar 

  82. Kitajima, S., et al., Dextran sodium sulfate-induced colitis in germ-free IQI/Jic mice. Exp Anim, 2001. 50(5): p. 387–95.

    Article  CAS  PubMed  Google Scholar 

  83. Cadwell, K., et al., Virus-plus-susceptibility gene interaction determines Crohn's disease gene Atg16L1 phenotypes in intestine. Cell, 2010. 141(7): p. 1135–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Trojanowska, D., et al., The role of Candida in inflammatory bowel disease. Estimation of transmission of C. albicans fungi in gastrointestinal tract based on genetic affinity between strains. Med Sci Monit, 2010. 16(10): p. CR451–7.

    CAS  PubMed  Google Scholar 

  85. Darfeuille-Michaud, A., et al., High prevalence of adherent-invasive Escherichia coli associated with ileal mucosa in Crohn's disease. Gastroenterology, 2004. 127(2): p. 412–21.

    Article  PubMed  Google Scholar 

  86. Human Microbiome Project, C., Structure, function and diversity of the healthy human microbiome. Nature, 2012. 486(7402): p. 207–14.

    Article  CAS  Google Scholar 

  87. Morgan, X.C., et al., Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment. Genome Biol, 2012. 13(9): p. R79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Whelan, K. and E.M. Quigley, Probiotics in the management of irritable bowel syndrome and inflammatory bowel disease. Curr Opin Gastroenterol, 2013. 29(2): p. 184–9.

    Article  PubMed  Google Scholar 

  89. van Nood, E., M.G. Dijkgraaf, and J.J. Keller, Duodenal infusion of feces for recurrent Clostridium difficile. N Engl J Med, 2013. 368(22): p. 2145.

    Article  PubMed  CAS  Google Scholar 

  90. Kump, P.K., et al., Alteration of intestinal dysbiosis by fecal microbiota transplantation does not induce remission in patients with chronic active ulcerative colitis. Inflamm Bowel Dis, 2013. 19(10): p. 2155–65.

    Article  PubMed  Google Scholar 

  91. Michaud, D.S., Epidemiology of pancreatic cancer. Minerva Chir, 2004. 59(2): p. 99–111.

    CAS  PubMed  Google Scholar 

  92. Feng, M., et al., PD-1/PD-L1 and immunotherapy for pancreatic cancer. Cancer Lett, 2017. 407: p. 57–65.

    Article  CAS  PubMed  Google Scholar 

  93. Guo, S., et al., Immunotherapy in pancreatic cancer: Unleash its potential through novel combinations. World J Clin Oncol, 2017. 8(3): p. 230–240.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Nesselhut, J., et al., Systemic treatment with anti-PD-1 antibody nivolumab in combination with vaccine therapy in advanced pancreatic cancer. Journal of Clinical Oncology, 2016. 34(15_suppl): p. 3092–3092.

    Article  Google Scholar 

  95. Pushalkar, S., et al., The Pancreatic Cancer Microbiome Promotes Oncogenesis by Induction of Innate and Adaptive Immune Suppression. Cancer Discov, 2018.

  96. Tanoue, T., et al., A defined commensal consortium elicits CD8 T cells and anti-cancer immunity. Nature, 2019. 565(7741): p. 600–605.

    Article  CAS  PubMed  Google Scholar 

  97. Hibberd, A.A., et al., Intestinal microbiota is altered in patients with colon cancer and modified by probiotic intervention. BMJ Open Gastroenterol, 2017. 4(1): p. e000145.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Hu, Y.J., et al., [Early outcomes of elective surgery for colon cancer with preoperative mechanical bowel preparation: a randomized clinical trial]. Nan Fang Yi Ke Da Xue Xue Bao, 2017. 37(1): p. 13–17.

    CAS  PubMed  Google Scholar 

  99. Guenaga, K.F., D. Matos, and P. Wille-Jorgensen, Mechanical bowel preparation for elective colorectal surgery. Cochrane Database Syst Rev, 2011(9): p. CD001544.

    Google Scholar 

  100. Rollins, K.E., H. Javanmard-Emamghissi, and D.N. Lobo, Impact of mechanical bowel preparation in elective colorectal surgery: A meta-analysis. World J Gastroenterol, 2018. 24(4): p. 519–536.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Nichols, R.L., et al., Effect of preoperative neomycin-erythromycin intestinal preparation on the incidence of infectious complications following colon surgery. 1973. Surg Infect (Larchmt), 2000. 1(2): p. 133–41; discussion 143, 145–6, 147–8.

    Article  CAS  Google Scholar 

  102. Anjum, N., et al., A Randomized Control Trial of Preoperative Oral Antibiotics as Adjunct Therapy to Systemic Antibiotics for Preventing Surgical Site Infection in Clean Contaminated, Contaminated, and Dirty Type of Colorectal Surgeries. Dis Colon Rectum, 2017. 60(12): p. 1291–1298.

    Article  PubMed  Google Scholar 

  103. Kiran, R.P., et al., Combined preoperative mechanical bowel preparation with oral antibiotics significantly reduces surgical site infection, anastomotic leak, and ileus after colorectal surgery. Ann Surg, 2015. 262(3): p. 416–25; discussion 423-5.

    Article  PubMed  Google Scholar 

  104. Ikeda, A., et al., Randomized clinical trial of oral and intravenous versus intravenous antibiotic prophylaxis for laparoscopic colorectal resection. Br J Surg, 2016. 103(12): p. 1608–1615.

    Article  CAS  PubMed  Google Scholar 

  105. Cannon, J.A., et al., Preoperative oral antibiotics reduce surgical site infection following elective colorectal resections. Dis Colon Rectum, 2012. 55(11): p. 1160–6.

    Article  PubMed  Google Scholar 

  106. Garfinkle, R., et al., Is There a Role for Oral Antibiotic Preparation Alone Before Colorectal Surgery? ACS-NSQIP Analysis by Coarsened Exact Matching. Dis Colon Rectum, 2017. 60(7): p. 729–737.

    Article  PubMed  Google Scholar 

  107. Mahajna, A., et al., Bowel preparation is associated with spillage of bowel contents in colorectal surgery. Dis Colon Rectum, 2005. 48(8): p. 1626–31.

    Article  PubMed  Google Scholar 

  108. Shogan, B.D., et al., Do we really know why colorectal anastomoses leak? J Gastrointest Surg, 2013. 17(9): p. 1698–707.

    Article  PubMed  Google Scholar 

  109. Jalanka, J., et al., Effects of bowel cleansing on the intestinal microbiota. Gut, 2015. 64(10): p. 1562–8.

    Article  PubMed  Google Scholar 

  110. Drago, L., et al., Persisting changes of intestinal microbiota after bowel lavage and colonoscopy. Eur J Gastroenterol Hepatol, 2016. 28(5): p. 532–7.

    Article  PubMed  Google Scholar 

  111. Sinsimer, D., et al., The common prophylactic therapy for bowel surgery is ineffective for clearing Bacteroidetes, the primary inducers of systemic inflammation, and causes faster death in response to intestinal barrier damage in mice. BMJ Open Gastroenterol, 2014. 1(1): p. e000009.

    Article  PubMed  Google Scholar 

  112. Shobar, R.M., et al., The Effects of Bowel Preparation on Microbiota-Related Metrics Differ in Health and in Inflammatory Bowel Disease and for the Mucosal and Luminal Microbiota Compartments. Clin Transl Gastroenterol, 2016. 7: p. e143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Olivas, A.D., et al., Intestinal tissues induce an SNP mutation in Pseudomonas aeruginosa that enhances its virulence: possible role in anastomotic leak. PLoS One, 2012. 7(8): p. e44326.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. van Praagh, J.B., et al., Mucus Microbiome of Anastomotic Tissue During Surgery Has Predictive Value for Colorectal Anastomotic Leakage. Ann Surg, 2019. 269(5): p. 911–916.

    Article  PubMed  Google Scholar 

  115. Pohl, J.M., et al., Irf4-dependent CD103(+)CD11b(+) dendritic cells and the intestinal microbiome regulate monocyte and macrophage activation and intestinal peristalsis in postoperative ileus. Gut, 2017. 66(12): p. 2110–2120.

    Article  CAS  PubMed  Google Scholar 

  116. Okada, M., et al., Experimental study of the influence of intestinal flora on the healing of intestinal anastomoses. Br J Surg, 1999. 86(7): p. 961–5.

    Article  CAS  PubMed  Google Scholar 

  117. Wren, S.M., et al., Preoperative oral antibiotics in colorectal surgery increase the rate of Clostridium difficile colitis. Arch Surg, 2005. 140(8): p. 752–6.

    Article  CAS  PubMed  Google Scholar 

  118. Kotzampassi, K., et al., A Four-Probiotics Regimen Reduces Postoperative Complications After Colorectal Surgery: A Randomized, Double-Blind, Placebo-Controlled Study. World J Surg, 2015. 39(11): p. 2776–83.

    Article  PubMed  Google Scholar 

  119. de Andrade Calaca, P.R., et al., Probiotics as a preventive strategy for surgical infection in colorectal cancer patients: a systematic review and meta-analysis of randomized trials. Transl Gastroenterol Hepatol, 2017. 2: p. 67.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Suez, J., et al., Post-Antibiotic Gut Mucosal Microbiome Reconstitution Is Impaired by Probiotics and Improved by Autologous FMT. Cell, 2018. 174(6): p. 1406–1423 e16.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miquell O. Miller.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miller, M.O., Kashyap, P.C., Becker, S.L. et al. SSAT State-of-the-Art Conference: Advancements in the Microbiome. J Gastrointest Surg 25, 1885–1895 (2021). https://doi.org/10.1007/s11605-020-04551-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11605-020-04551-4

Keywords

Navigation