Journal of Gastrointestinal Surgery

, Volume 22, Issue 7, pp 1277–1285 | Cite as

The New Frontier: the Intestinal Microbiome and Surgery

  • Kinga B. Skowron
  • Benjamin D. Shogan
  • David T. Rubin
  • Neil H. Hyman
Review Article


The microbiome exerts a remarkable effect on human physiology. The study of the human-microbiome relationship is a burgeoning field with great potential to improve our understanding of health and disease. In this review, we address common surgical problems influenced by the human microbiome and explore what is thus far known about this relationship. These include inflammatory bowel disease, colorectal neoplasms, and diverticular disease. We will also discuss the effect of the microbiome on surgical complications, specifically anastomotic leak. We hope that further research in this field will enlighten our management of these and other surgical problems.


Microbiota Colorectal neoplasms Inflammatory bowel diseases Anastomotic leak Diverticular diseases 


Author’s Contributions

All authors contributed to the creation, drafting, and final approval of this manuscript.


Author names in bold designate shared co-first authorship

  1. 1.
    Seal A. Appendicitis: a historical review. Can J Surg. 1981 24(4):427–33.PubMedGoogle Scholar
  2. 2.
    Tansarli GS, Karageorgopoulos DE, Kapaskelis A, Falagas ME. Impact of antimicrobial multidrug resistance on inpatient care cost: an evaluation of the evidence. Expert Rev Anti Infect Ther. 2013 11(3):321–31.CrossRefPubMedGoogle Scholar
  3. 3.
    Bianconi E, Piovesan A, Facchin F, Beraudi A, Casadei R, Frabetti F, Vitale L, Pelleri MC, Tassani S, Piva F, Perez-Amodio S, Strippoli P, Canaider S. An estimation of the number of cells in the human body. Ann Hum Biol. 2013 40(6):463–71.CrossRefPubMedGoogle Scholar
  4. 4.
    Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R, Gordon JI. The human microbiome project. Nature. 2007 449(7164):804–10.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Everhart JE, Ruhl CE. Burden of digestive diseases in the United States part I: overall and upper gastrointestinal diseases. Gastroenterology. 2009 136(2):376–86.CrossRefPubMedGoogle Scholar
  6. 6.
    Larson DW, Pemberton JH. Current concepts and controversies in surgery for IBD. Gastroenterology. 2004 126(6):1611–9.CrossRefPubMedGoogle Scholar
  7. 7.
    Dalal SR, Chang EB. The microbial basis of inflammatory bowel diseases. J Clin Invest. 2014 124(10):4190–6.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Manichanh C, Rigottier-Gois L, Bonnaud E, Gloux K, Pelletier E, Frangeul L, Nalin R, Jarrin C, Chardon P, Marteau P, Roca J, Dore J. Reduced diversity of faecal microbiota in Crohn’s disease revealed by a metagenomic approach. Gut. 2006 55(2):205–11.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Ott S, Musfeldt M, Wenderoth D, Hampe J, Brant O, Folsch U, Timmis KN, Schreiber S. Reduction in diversity of the colonic mucosa associated bacterial microflora in patients with active inflammatory bowel disease. Gut. 2004 53(5):685–93.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Tamboli CP, Neut C, Desreumaux P, Colombel JF. Dysbiosis in inflammatory bowel disease. Gut. 2004 53(1):1–4.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Ogura Y, Bonen DK, Inohara N, Nicolae DL, Chen FF, Ramos R, Britton H, Moran T, Karaliuskas R, Duerr RH, Achkar JP, Brant SR, Bayless TM, Kirschner BS, Hanauer SB, Nunez G, Cho JH. A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease. Nature. 2001 411(6837):603–6.CrossRefPubMedGoogle Scholar
  12. 12.
    Hugot JP, Chamaillard M, Zouali H, Lesage S, Cézard JP, Belaiche J, Almer S, Tysk C, O'Morain CA, Gassull M, Binder V, Finkel Y, Cortot A, Modigliani R, Laurent-Puig P, Gower-Rousseau C, Macry J, Colombel JF, Sahbatou M, Thomas G. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease. Nature. 2001 411(6837):599–603.CrossRefPubMedGoogle Scholar
  13. 13.
    Maeda S, Hsu L-C, Liu H, Bankston LA, Iimura M, Kagnoff MF, Eckmann L, Karin M. Nod2 mutation in Crohn’s disease potentiates NF-kappaB activity and IL-1beta processing. Science. 2005 307(5710):734–8.CrossRefPubMedGoogle Scholar
  14. 14.
    Couturier-Maillard A, Secher T, Rehman A, Normand S, De Arcangelis A, Haesler R, Huot L, Grandjean T, Bressenot A, Delanoye-Crespin A, Gaillot O, Schreiber S, Lemoine Y, Ryffel B, Hot D, Nunez G, Chen G, Rosenstiel P, Chamaillard M. NOD2-mediated dysbiosis predisposes mice to transmissible colitis and colorectal cancer. J Clin Invest. 2013 123(2):700–11.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Shah N, Kammermeier J, Elawad M, Glocker E-O. Interleukin-10 and Interleukin-10–Receptor Defects in Inflammatory Bowel Disease. Curr Allergy Asthma Rep. 2012 12(5):373–9.CrossRefPubMedGoogle Scholar
  16. 16.
    Uronis JM, Mühlbauer M, Herfarth HH, Rubinas TC, Jones GS, Jobin C. Modulation of the Intestinal Microbiota Alters Colitis-Associated Colorectal Cancer Susceptibility. PLoS ONE. 2009 4(6):e6026.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Arthur JC, Jobin C. The complex interplay between inflammation, the microbiota and colorectal cancer. Gut Microbes. 2013 4(3):253–8.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Loftus EV. Clinical epidemiology of inflammatory bowel disease: Incidence, prevalence, and environmental influences. Gastroenterology. 2004 126(6):1504–17.CrossRefPubMedGoogle Scholar
  19. 19.
    De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet JB, Massart S, Collini S, Pieraccini G, Lionetti P. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci. 2010 107(33):14691–6.CrossRefPubMedGoogle Scholar
  20. 20.
    Devkota S, Wang Y, Musch MW, Leone V, Fehlner-Peach H, Nadimpalli A, Antonopoulos DA, Jabri B, Chang EB. Dietary-fat-induced taurocholic acid promotes pathobiont expansion and colitis in Il10−/− mice. Nature. 2012 487(7405):104–8.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Looft T, Allen HK. Collateral effects of antibiotics on mammalian gut microbiomes. Gut Microbes. 2012 3(5):463–7.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Hviid A, Svanstrom H, Frisch M. Antibiotic use and inflammatory bowel diseases in childhood. Gut. 2011 60(1):49–54.CrossRefPubMedGoogle Scholar
  23. 23.
    Kostic AD, Xavier RJ, Gevers D. The Microbiome in Inflammatory Bowel Disease: Current Status and the Future Ahead. Gastroenterology. 2014 146(6):1489–99.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Darfeuille-Michaud A, Boudeau J, Bulois P, Neut C, Glasser A-L, Barnich N, Bringer M-A, Swidsinski A, Beaugerie L, Colombel J-F. High prevalence of adherent-invasive Escherichia coli associated with ileal mucosa in Crohn’s disease. Gastroenterology. 2004 127(2):412–21.CrossRefPubMedGoogle Scholar
  25. 25.
    Neut C, Bulois P, Desreumaux P, Membree J-M, Lederman E, Gambiez L, Cortot A, Quandalle P, Kruiningen H, Colombel J-F. Changes in the bacterial flora of the neoterminal ileum after ileocolonic resection for Crohn’s disease. Am J Gastroenterol. 2002 97(4):939–46.CrossRefPubMedGoogle Scholar
  26. 26.
    Rodemann JF, Dubberke ER, Reske KA, Seo DH, Stone CD. Incidence of Clostridium difficile Infection in Inflammatory Bowel Disease. Clin Gastroenterol Hepatol. 2007 5(3):339–44.CrossRefPubMedGoogle Scholar
  27. 27.
    Shen B, Jiang Z, Fazio V, Remzi F, Rodriguez L, Bennett A, Lopez R, Queener E, Dupont H. Clostridium difficile Infection in Patients With Ileal Pouch–Anal Anastomosis. Clin Gastroenterol Hepatol. 2008 6(7):782–8.CrossRefPubMedGoogle Scholar
  28. 28.
    Ruseler-van Embden JG, Schouten WR, van Lieshout LM. Pouchitis: result of microbial imbalance? Gut. 1994 35(5):658–64.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Skowron KB, Lapin B, Rubin M, Hurst RD, Rubin DT, Hyman NH, Umanskiy K. Clostridium Difficile Infection in Ulcerative Colitis: Can Alteration of the Gut-associated Microbiome Contribute to Pouch Failure? Inflamm Bowel Dis. 2016 22(4):902–11.CrossRefPubMedGoogle Scholar
  30. 30.
    Damman CJ, Miller SI, Surawicz CM, Zisman TL. The Microbiome and Inflammatory Bowel Disease: Is There a Therapeutic Role for Fecal Microbiota Transplantation? Am J Gastroenterol. 2012 107(10):1452–9.CrossRefPubMedGoogle Scholar
  31. 31.
    Borody TJ, Warren EF, Leis S, Surace R, Ashman O. Treatment of ulcerative colitis using fecal bacteriotherapy. J Clin Gastroenterol. 2003 37(1):42–7.CrossRefPubMedGoogle Scholar
  32. 32.
    Moayyedi P, Surette MG, Kim PT, Libertucci J, Wolfe M, Onischi C, Armstrong D, Marshall JK, Kassam Z, Reinisch W, Lee CH. Fecal Microbiota Transplantation Induces Remission in Patients With Active Ulcerative Colitis in a Randomized Controlled Trial. Gastroenterology. 2015 149(1):102–9.e6.CrossRefPubMedGoogle Scholar
  33. 33.
    Yabroff KR, Mariotto AB, Feuer E, Brown ML. Projections of the costs associated with colorectal cancer care in the United States, 2000-2020. Health Econ. 2008 17(8):947–59.CrossRefPubMedGoogle Scholar
  34. 34.
    Dejea CM, Fathi P, Craig JM, Boleij A, Taddese R, Geis AL, Wu X, DeStefano Shields CE, Hechenbleikner EM, Huso DL, Anders RA, Giardiello FM, Wick EC, Wang H, Wu S, Pardoll DM, Housseau F, Sears CL. Patients with familial adenomatous polyposis harbor colonic biofilms containing tumorigenic bacteria. Science. 2018 359(6375):592–7.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Johnson CH, Dejea CM, Edler D, Hoang LT, Santidrian AF, Felding BH, Ivanisevic J, Cho K, Wick EC, Hechenbleikner EM, Uritboonthai W, Goetz L, Casero RA, Pardoll DM, White JR, Patti GJ, Sears CL, Siuzdak G. Metabolism Links Bacterial Biofilms and Colon Carcinogenesis. Cell Metab. 2015 21(6):891–7.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Garrett WS. Cancer and the microbiota. Science. 2015 348(6230):80–6.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Karin M, Greten FR. NF-κB: linking inflammation and immunity to cancer development and progression. Nat Rev Immunol. 2005 5(10):749–59.CrossRefPubMedGoogle Scholar
  38. 38.
    Krezalek MA, Skowron K, Guyton KL, Shakhsheer B, Hyoju S, Alverdy JC. The intestinal microbiome and surgical disease. Curr Probl Surg. 2016 June.Google Scholar
  39. 39.
    Huycke MM, Gaskins HR. Commensal bacteria, redox stress, and colorectal cancer: mechanisms and models. Exp Biol Med (Maywood). 2004 229(7):586–97.CrossRefGoogle Scholar
  40. 40.
    Hullar MAJ, Burnett-Hartman AN, Lampe JW. Gut Microbes, Diet, and Cancer. Cancer Treat Res. 2014 159: 377–99.Google Scholar
  41. 41.
    Carbonero F, Benefiel AC, Alizadeh-Ghamsari AH, Gaskins HR. Microbial pathways in colonic sulfur metabolism and links with health and disease. Front Physiol. 2012; 3(448).Google Scholar
  42. 42.
    Schwabe RF, Jobin C. The microbiome and cancer. Nat Rev Cancer. 2013 13(11):800–12.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Ellmerich S, Scholler M, Duranton B, Gosse F, Galluser M, Klein J-P, Raul F. Promotion of intestinal carcinogenesis by Streptococcus bovis. Carcinogenesis. 2000 21(4):753–6.CrossRefPubMedGoogle Scholar
  44. 44.
    Abdulamir AS, Hafidh RR, Bakar F. Molecular detection, quantification, and isolation of Streptococcus gallolyticus bacteria colonizing colorectal tumors: inflammation-driven potential of carcinogenesis via IL-1, COX-2, and IL-8. Mol Cancer. 2010; 9(1):249.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Boleij A, Hechenbleikner EM, Goodwin AC, Badani R, Stein EM, Lazarev MG, Ellis B, Carroll KC, Albesiano E, Wick EC, Platz EA, Pardoll DM, Sears CL. The Bacteroides fragilis Toxin Gene Is Prevalent in the Colon Mucosa of Colorectal Cancer Patients. Clin Infect Dis. 2015 60(2):208–15.CrossRefPubMedGoogle Scholar
  46. 46.
    Rhee K-J, Wu S, Wu X, Huso DL, Karim B, Franco AA, Rabizadeh S, Golub JE, Mathews LE, Shin J, Sartor RB, Golenbock D, Hamad AR, Gan CM, Housseau F, Sears CL. Induction of Persistent Colitis by a Human Commensal, Enterotoxigenic Bacteroides fragilis, in Wild-Type C57BL/6 Mice. Infect Immun. 2009 77(4):1708–18.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Wu S, Morin PJ, Maouyo D, Sears CL. Bacteroides fragilis enterotoxin induces c-Myc expression and cellular proliferation. Gastroenterology. 2003 124(2):392–400.CrossRefPubMedGoogle Scholar
  48. 48.
    Rubinstein MR, Wang X, Liu W, Hao Y, Cai G, Han YW. Fusobacterium nucleatum Promotes Colorectal Carcinogenesis by Modulating E-Cadherin/β-Catenin Signaling via its FadA Adhesin. Cell Host Microbe. 2013 14(2):195–206.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Kostic AD, Chun E, Robertson L, Glickman JN, Gallini CA, Michaud M, Clancy TE, Chung DC, Lochhead P, Hold GL, El-Omar EM, Brenner D, Fuchs CS, Meyerson M, Garrett WS. Fusobacterium nucleatum Potentiates Intestinal Tumorigenesis and Modulates the Tumor-Immune Microenvironment. Cell Host Microbe. 2013 14(2):207–15.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    McCoy AN, Araújo-Pérez F, Azcárate-Peril A, Yeh JJ, Sandler RS, Keku TO. Fusobacterium Is Associated with Colorectal Adenomas. PLoS ONE. 2013 8(1):e53653.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Yu T, Guo F, Yu Y, Sun T, Ma D, Han J, Qian Y, Kryczek I, Sun D, Nagarsheth N, Chen Y, Chen H, Hong J, Zou W, Fang J-Y. Fusobacterium nucleatum Promotes Chemoresistance to Colorectal Cancer by Modulating Autophagy. Cell. 2017 170(3):548–63.e16.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Huycke MM, Moore DR. In vivo production of hydroxyl radical by enterococcus faecalis colonizing the intestinal tract using aromatic hydroxylation. Free Radic Biol Med. 2002 33(6):818–26.CrossRefPubMedGoogle Scholar
  53. 53.
    Balamurugan R, Rajendiran E, George S, Samuel GV, Ramakrishna BS. Real-time polymerase chain reaction quantification of specific butyrate-producing bacteria, Desulfovibrio and Enterococcus faecalis in the feces of patients with colorectal cancer. J Gastroenterol Hepatol. 2008 23(8pt1):1298–303.CrossRefPubMedGoogle Scholar
  54. 54.
    Balish E, Warner T. Enterococcus faecalis Induces Inflammatory Bowel Disease in Interleukin-10 Knockout Mice. Am J Pathol. 2002 160(6):2253–7.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Maddocks ODK, Short AJ, Donnenberg MS, Bader S, Harrison DJ. Attaching and Effacing Escherichia coli Downregulate DNA Mismatch Repair Protein In Vitro and Are Associated with Colorectal Adenocarcinomas in Humans. PLoS ONE. 2009 4(5):e5517.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Cuevas-Ramos G, Petit CR, Marcq I, Boury M, Oswald E, Nougayrede J-P. Escherichia coli induces DNA damage in vivo and triggers genomic instability in mammalian cells. Proc Natl Acad Sci. 2010 107(25):11537–42.CrossRefPubMedGoogle Scholar
  57. 57.
    Nougayrede J-P, Homburg S, Taieb F, Boury M, Brzuszkiewicz E, Gottschalk G, Buchrieser C, Hacker J, Dobrindt U, Oswald E. Escherichia coli Induces DNA Double-Strand Breaks in Eukaryotic Cells. Science. 2006 313(5788):848–51.CrossRefPubMedGoogle Scholar
  58. 58.
    Bonnet M, Buc E, Sauvanet P, Darcha C, Dubois D, Pereira B, Dechelotte P, Bonnet R, Pezet D, Darfeuille-Michaud A. Colonization of the Human Gut by E. coli and Colorectal Cancer Risk. Clin Cancer Res. 2014 20(4):859–67.CrossRefPubMedGoogle Scholar
  59. 59.
    Khazaie K, Zadeh M, Khan MW, Bere P, Gounari F, Dennis K, Blatner NR, Owen JL, Klaenhammer TR, Mohamadzadeh M. Abating colon cancer polyposis by Lactobacillus acidophilus deficient in lipoteichoic acid. Proc Natl Acad Sci. 2012 109(26):10462–7.CrossRefPubMedGoogle Scholar
  60. 60.
    Lim CC, Ferguson LR, Tannock GW. Dietary fibres as “prebiotics”: Implications for colorectal cancer. Mol Nutr Food Res. 2005 49(6):609–19.CrossRefPubMedGoogle Scholar
  61. 61.
    Wallace BD, Wang H, Lane KT, Scott JE, Orans J, Koo JS, Venkatesh M, Jobin C, Yeh L-A, Mani S, Redinbo MR. Alleviating Cancer Drug Toxicity by Inhibiting a Bacterial Enzyme. Science. 2010 330(6005):831–5.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Vetizou M, Pitt JM, Daillere R, Lepage P, Waldschmitt N, Flament C, Rusakiewicz S, Routy B, Roberti MP, Duong CPM, Poirier-Colame V, Roux A, Becharef S, Formenti S, Golden E, Cording S, Eberl G, Schlitzer A, Ginhoux F, Mani S, Yamazaki T, Jacquelot N, Enot DP, Berard M, Nigou J, Opolon P, Eggermont A, Woerther P-L, Chachaty E, Chaput N, Robert C, Mateus C, Kroemer G, Raoult D, Boneca IG, Carbonnel F, Chamaillard M, Zitvogel L. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science. 2015 350(6264):1079–84.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Sivan A, Corrales L, Hubert N, Williams JB, Aquino-Michaels K, Earley ZM, Benyamin FW, Man Lei Y, Jabri B, Alegre M-L, Chang EB, Gajewski TF. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science. 2015 350(6264):1084–9.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Jamal Talabani A, Lydersen S, Ness-Jensen E, Endreseth BH, Edna T-H. Risk factors of admission for acute colonic diverticulitis in a population-based cohort study: The North Trondelag Health Study, Norway. World J Gastroenterol. 2016; 22(48):10663.CrossRefPubMedGoogle Scholar
  65. 65.
    Jamal Talabani A, Lydersen S, Endreseth BH, Edna T-H. Major increase in admission- and incidence rates of acute colonic diverticulitis. Int J Colorectal Dis. 2014 29(8):937–45.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Peery AF, Barrett PR, Park D, Rogers AJ, Galanko JA, Martin CF, Sandler RS. A high-fiber diet does not protect against asymptomatic diverticulosis. Gastroenterology. 2012 142(2):266–72.e1.CrossRefPubMedGoogle Scholar
  67. 67.
    Finegold SM, Attebery HR, Sutter VL. Effect of diet on human fecal flora: comparison of Japanese and American diets. Am J Clin Nutr. 1974 27(12):1456–69.CrossRefPubMedGoogle Scholar
  68. 68.
    Hooda S, Boler BMV, Serao MCR, Brulc JM, Staeger MA, Boileau TW, Dowd SW, Fahey GC, Swanson KS. 454 pyrosequencing reveals a shift in fecal microbiota of healthy adult men consuming polydextrose or soluble corn fiber. J Nutr. 2012 142(7):1259–65.CrossRefPubMedGoogle Scholar
  69. 69.
    Kvasnovsky CL, Bjarnason I, Donaldson AN, Sherwood RA, Papagrigoriadis S. A randomized double-blind placebo-controlled trial of a multi-strain probiotic in treatment of symptomatic uncomplicated diverticular disease. Inflammopharmacology. 2017 May 20.Google Scholar
  70. 70.
    Lahner E, Bellisario C, Hassan C, Zullo A, Esposito G, Annibale B. Probiotics in the Treatment of Diverticular Disease. A Systematic Review. J Gastrointestin Liver Dis. 2016 25(1):79–86.PubMedGoogle Scholar
  71. 71.
    Daniels L, Philipszoon LE, Boermeester MA. A hypothesis: important role for gut microbiota in the etiopathogenesis of diverticular disease. Dis Colon Rectum. 2014 57(4):539–43.Google Scholar
  72. 72.
    Buchs NC, Gervaz P, Secic M, Bucher P, Mugnier-Konrad B, Morel P. Incidence, consequences, and risk factors for anastomotic dehiscence after colorectal surgery: a prospective monocentric study. Int J Colorectal Dis. 2008 23(3):265–70.CrossRefPubMedGoogle Scholar
  73. 73.
    McArdle CS, McMillan DC, Hole DJ. Impact of anastomotic leakage on long-term survival of patients undergoing curative resection for colorectal cancer. Br J Surg. 2005 92(9):1150–4.CrossRefPubMedGoogle Scholar
  74. 74.
    Paun BC, Cassie S, MacLean AR, Dixon E, Buie WD. Postoperative complications following surgery for rectal cancer. Ann Surg. 2010 251(5):807–18.CrossRefPubMedGoogle Scholar
  75. 75.
    Hallböök O, Sjödahl R. Anastomotic leakage and functional outcome after anterior resection of the rectum. Br J Surg. 1996 83(1):60–2.CrossRefPubMedGoogle Scholar
  76. 76.
    Gertsch P, Baer HU, Kraft R, Maddern GJ, Altermatt HJ. Malignant cells are collected on circular staplers. Dis Colon Rectum. 1992 35(3):238–41.Google Scholar
  77. 77.
    Umpleby HC, Fermor B, Symes MO, Williamson RC. Viability of exfoliated colorectal carcinoma cells. Br J Surg. 1984 71(9):659–63.CrossRefPubMedGoogle Scholar
  78. 78.
    Goligher JC, Graham NG, De Dombal FT. Anastomotic dehiscence after anterior resection of rectum and sigmoid. Br J Surg. 1970 57(2):109–18.CrossRefPubMedGoogle Scholar
  79. 79.
    Ogilvie JW, Dietz DW, Stocchi L. Anastomotic leak after restorative proctosigmoidectomy for cancer: what are the chances of a permanent ostomy? Int J Colorectal Dis. 2012 27(10):1259–66.CrossRefPubMedGoogle Scholar
  80. 80.
    Shogan BD, Carlisle EM, Alverdy JC, Umanskiy K. Do we really know why colorectal anastomoses leak? J Gastrointest Surg. 2013 17(9):1698–707.CrossRefPubMedGoogle Scholar
  81. 81.
    Cohn I, Rives JD. Antibiotic protection of colon anastomoses. Ann Surg. 1955 141(5):707–17.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Cohen SR, Cornell CN, Collins MH, Sell JE, Blanc WA, Altman RP. Healing of ischemic colonic anastomoses in the rat: role of antibiotic preparation. Surgery. 1985 97(4):443–6.PubMedGoogle Scholar
  83. 83.
    Schardey HM, Kamps T, Rau HG, Gatermann S, Baretton G, Schildberg FW. Bacteria: a major pathogenic factor for anastomotic insufficiency. Antimicrob Agents Chemother. 1994 38(11):2564–7.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Shogan BD, Smith DP, Christley S, Gilbert JA, Zaborina O, Alverdy JC. Intestinal anastomotic injury alters spatially defined microbiome composition and function. Microbiome. 2014; 2:35.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Brook I, Walker RI, MacVittie TJ. Effect of antimicrobial therapy on bowel flora and bacterial infection in irradiated mice. Int J Radiat Biol Relat Stud Phys Chem Med. 1988 53(5):709–16.CrossRefPubMedGoogle Scholar
  86. 86.
    Olivas AD, Shogan BD, Valuckaite V, Zaborin A, Belogortseva N, Musch M, Meyer F, L Trimble W, An G, Gilbert J, Zaborina O, Alverdy JC.. Intestinal Tissues Induce an SNP Mutation in Pseudomonas aeruginosa That Enhances Its Virulence: Possible Role in Anastomotic Leak. Kaufmann GF, editor. PLoS ONE. 2012 7(8):e44326.Google Scholar
  87. 87.
    Shogan BD, Belogortseva N, Luong PM, Zaborin A, Lax S, Bethel C, Ward M, Muldoon JP, Singer M, An G, Umanskiy K, Konda V, Shakhsheer B, Luo J, Klabbers R, Hancock LE, Gilbert J, Zaborina O, Alverdy JC. Collagen degradation and MMP9 activation by Enterococcus faecalis contribute to intestinal anastomotic leak. Sci Transl Med. 2015 7(286):286ra68.Google Scholar
  88. 88.
    Schardey HM, Joosten U, Finke U, Staubach KH, Schauer R, Heiss A, Kooistra A, Rau HG, Nibler R, Ludeling S, Unertl K, Ruckdeschel G, Exner H, Schildberg FW. The prevention of anastomotic leakage after total gastrectomy with local decontamination. A prospective, randomized, double-blind, placebo-controlled multicenter trial. Ann Surg. 1997 225(2):172–80.CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Kiran RP, Murray ACA, Chiuzan C, Estrada D, Forde K. Combined Preoperative Mechanical Bowel Preparation With Oral Antibiotics Significantly Reduces Surgical Site Infection, Anastomotic Leak, and Ileus After Colorectal Surgery: Ann Surg. 2015 262(3):416–25.PubMedGoogle Scholar

Copyright information

© The Society for Surgery of the Alimentary Tract 2018

Authors and Affiliations

  • Kinga B. Skowron
    • 1
  • Benjamin D. Shogan
    • 1
  • David T. Rubin
    • 2
  • Neil H. Hyman
    • 1
  1. 1.Department of SurgeryUniversity of Chicago MedicineChicagoUSA
  2. 2.Department of Medicine, Section of Gastroenterology, Hepatology and NutritionUniversity of Chicago MedicineChicagoUSA

Personalised recommendations