Skip to main content
Log in

What Is “Enhanced Recovery,” and How Can I Do It?

  • Evidence-Based Current Surgical Practice
  • Published:
Journal of Gastrointestinal Surgery

Abstract

Background

Enhanced recovery (ER) and fast-track protocols were initially implemented in the perioperative management of the surgical patient over 20 years ago. These standardized protocols are now broadly implemented across most surgical specialties for its many benefits. ER is well known for its positive effects on decreasing length of stay and complications. However, patient-centric outcomes for adequate pain control, functional recovery, costs, and overall patient experience are less considered.

How I Do It

A successful ER foundation stands on the pillars of several perioperative care principles: early feeding, early ambulation, goal-directed fluid therapy, and opiate-sparing analgesia. Moreover, it requires a multi-disciplinary team buy-in (including patient and family) that must also be thoughtfully executed. The following is a review of key elements within successful evidence-based ER protocols and relevant concepts to consider when starting a successful enhanced recovery program.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Kehlet H, Wilmore DW. Fast-track surgery. Br J Surg. 2005;92(1):3–4.

    Article  CAS  PubMed  Google Scholar 

  2. Stottmeier S, Harling H, Wille-Jorgensen P, Balleby L, Kehlet H. Pathogenesis of morbidity after fast-track laparoscopic colonic cancer surgery. Colorectal Dis. 2011;13(5):500–505.

    Article  CAS  PubMed  Google Scholar 

  3. Song W, Wang K, Zhang RJ, Dai QX, Zou SB. The enhanced recovery after surgery (ERAS) program in liver surgery: a meta-analysis of randomized controlled trials. Springerplus. 2016;5:207.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Hughes MJ, McNally S, Wigmore SJ. Enhanced recovery following liver surgery: a systematic review and meta-analysis. HPB (Oxford). 2014;16(8):699–706.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Kim BJ, Tzeng CD, Cooper AB, Vauthey JN, Aloia TA. Borderline operability in hepatectomy patients is associated with higher rates of failure to rescue after severe complications. J Surg Oncol. 2017;115(3):337–343.

    Article  CAS  PubMed  Google Scholar 

  6. Karnofsky DA. Cancer Chemotherapeutic Agents. CA Cancer J Clin. 1964;14:67–72.

    Article  CAS  PubMed  Google Scholar 

  7. Cleeland CS, Mendoza TR, Wang XS, Chou C, Harle MT, Morrissey M, Engstrom MC. Assessing symptom distress in cancer patients: the M.D. Anderson Symptom Inventory. Cancer. 2000;89(7):1634–1646.

    Article  CAS  PubMed  Google Scholar 

  8. Carey EJ, Steidley DE, Aqel BA, Byrne TJ, Mekeel KL, Rakela J, Vargas HE, Douglas DD. Six-minute walk distance predicts mortality in liver transplant candidates. Liver Transpl. 2010;16(12):1373–1378.

    Article  PubMed  Google Scholar 

  9. Hofheinz M, Mibs M. The Prognostic Validity of the Timed Up and Go Test With a Dual Task for Predicting the Risk of Falls in the Elderly. Gerontol Geriatr Med. 2016;2:2333721416637798.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Nordin E, Lindelof N, Rosendahl E, Jensen J, Lundin-Olsson L. Prognostic validity of the Timed Up-and-Go test, a modified Get-Up-and-Go test, staff's global judgement and fall history in evaluating fall risk in residential care facilities. Age Ageing. 2008;37(4):442–448.

    Article  PubMed  Google Scholar 

  11. Takamoto T, Hashimoto T, Inoue K, Nagashima D, Maruyama Y, Mitsuka Y, Aramaki O, Makuuchi M. Applicability of enhanced recovery program for advanced liver surgery. World J Surg. 2014;38(10):2676–2682.

    Article  PubMed  Google Scholar 

  12. Granziera E, Guglieri I, Del Bianco P, Capovilla E, Dona B, Ciccarese AA, Kilmartin D, Manfredi V, De Salvo GL. A multidisciplinary approach to improve preoperative understanding and reduce anxiety: a randomised study. Eur J Anaesthesiol. 2013;30(12):734–742.

    Article  PubMed  Google Scholar 

  13. Djaladat H, Bruins HM, Miranda G, Cai J, Skinner EC, Daneshmand S. The association of preoperative serum albumin level and American Society of Anesthesiologists (ASA) score on early complications and survival of patients undergoing radical cystectomy for urothelial bladder cancer. BJU Int. 2014;113(6):887–893.

    Article  CAS  PubMed  Google Scholar 

  14. Lucas DJ, Haider A, Haut E, Dodson R, Wolfgang CL, Ahuja N, Sweeney J, Pawlik TM. Assessing readmission after general, vascular, and thoracic surgery using ACS-NSQIP. Ann Surg. 2013;258(3):430–439.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Wagner D, DeMarco MM, Amini N, Buttner S, Segev D, Gani F, Pawlik TM. Role of frailty and sarcopenia in predicting outcomes among patients undergoing gastrointestinal surgery. World J Gastrointest Surg. 2016;8(1):27–40.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Lin MY, Liu WY, Tolan AM, Aboulian A, Petrie BA, Stabile BE. Preoperative serum albumin but not prealbumin is an excellent predictor of postoperative complications and mortality in patients with gastrointestinal cancer. Am Surg. 2011;77(10):1286–1289.

    PubMed  Google Scholar 

  17. Brady M, Kinn S, Stuart P. Preoperative fasting for adults to prevent perioperative complications. Cochrane Database Syst Rev. 2003(4):CD004423.

    Google Scholar 

  18. Zmora O, Mahajna A, Bar-Zakai B, Rosin D, Hershko D, Shabtai M, Krausz MM, Ayalon A. Colon and rectal surgery without mechanical bowel preparation: a randomized prospective trial. Ann Surg. 2003;237(3):363–367.

    PubMed  PubMed Central  Google Scholar 

  19. Nygren J, Thorell A, Ljungqvist O. Preoperative oral carbohydrate nutrition: an update. Curr Opin Clin Nutr Metab Care. 2001;4(4):255–259.

    Article  CAS  PubMed  Google Scholar 

  20. Hausel J, Nygren J, Lagerkranser M, Hellstrom PM, Hammarqvist F, Almstrom C, Lindh A, Thorell A, Ljungqvist O. A carbohydrate-rich drink reduces preoperative discomfort in elective surgery patients. Anesth Analg. 2001;93(5):1344–1350.

    Article  CAS  PubMed  Google Scholar 

  21. Svanfeldt M, Thorell A, Hausel J, Soop M, Rooyackers O, Nygren J, Ljungqvist O. Randomized clinical trial of the effect of preoperative oral carbohydrate treatment on postoperative whole-body protein and glucose kinetics. Br J Surg. 2007;94(11):1342–1350.

    Article  CAS  PubMed  Google Scholar 

  22. Bratzler DW, Houck PM, Surgical Infection Prevention Guideline Writers W. Antimicrobial prophylaxis for surgery: an advisory statement from the National Surgical Infection Prevention Project. Am J Surg. 2005;189(4):395–404.

    Article  PubMed  Google Scholar 

  23. Ljungqvist O, Scott M, Fearon KC. Enhanced Recovery After Surgery: A Review. JAMA Surg. 2017;152(3):292–298.

    Article  PubMed  Google Scholar 

  24. Darouiche RO, Wall MJ, Jr., Itani KM, Otterson MF, Webb AL, Carrick MM, Miller HJ, Awad SS, Crosby CT, Mosier MC, Alsharif A, Berger DH. Chlorhexidine-Alcohol versus Povidone-Iodine for Surgical-Site Antisepsis. N Engl J Med. 2010;362(1):18–26.

    Article  CAS  PubMed  Google Scholar 

  25. Lennon FE, Moss J, Singleton PA. The mu-opioid receptor in cancer progression: is there a direct effect? Anesthesiology. 2012;116:940–945.

    Article  PubMed  Google Scholar 

  26. Lennon FE, Mirzapoiazova T, Mambetsariev B, Poroyko VA, Salgia R, Moss J, Singleton PA. The Mu opioid receptor promotes opioid and growth factor-induced proliferation, migration and Epithelial Mesenchymal Transition (EMT) in human lung cancer. PLoS One. 2014;9(3):e91577.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Mathew B, Lennon FE, Siegler J, Mirzapoiazova T, Mambetsariev N, Sammani S, Gerhold LM, LaRiviere PJ, Chen CT, Garcia JG, Salgia R, Moss J, Singleton PA. The novel role of the mu opioid receptor in lung cancer progression: a laboratory investigation. Anesth Analg. 2011;112(3):558–567.

    Article  CAS  PubMed  Google Scholar 

  28. Bortsov AV, Millikan RC, Belfer I, Boortz-Marx RL, Arora H, McLean SA. mu-Opioid receptor gene A118G polymorphism predicts survival in patients with breast cancer. Anesthesiology. 2012;116(4):896–902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wang S, Li Y, Liu XD, Zhao CX, Yang KQ. Polymorphism of A118G in mu-opioid receptor gene is associated with risk of esophageal squamous cell carcinoma in a Chinese population. Int J Clin Oncol. 2013;18(4):666–669.

    Article  CAS  PubMed  Google Scholar 

  30. Singleton PA, Lingen MW, Fekete MJ, Garcia JG, Moss J. Methylnaltrexone inhibits opiate and VEGF-induced angiogenesis: role of receptor transactivation. Microvasc Res. 2006;72(1–2):3–11.

    Article  CAS  PubMed  Google Scholar 

  31. Denlinger CE, Ikonomidis JS, Reed CE, Spinale FG. Epithelial to mesenchymal transition: the doorway to metastasis in human lung cancers. J Thorac Cardiovasc Surg. 2010;140(3):505–513.

    Article  PubMed  Google Scholar 

  32. Iwatsuki M, Mimori K, Yokobori T, Ishi H, Beppu T, Nakamori S, Baba H, Mori M. Epithelial-mesenchymal transition in cancer development and its clinical significance. Cancer Sci. 2010;101(2):293–299.

    Article  CAS  PubMed  Google Scholar 

  33. Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition. J Clin Invest. 2009;119(6):1420–1428.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Voulgari A, Pintzas A. Epithelial-mesenchymal transition in cancer metastasis: mechanisms, markers and strategies to overcome drug resistance in the clinic. Biochim Biophys Acta. 2009;1796(2):75–90.

    CAS  PubMed  Google Scholar 

  35. Singh B, Lucci A. Role of cyclooxygenase-2 in breast cancer. J Surg Res. 2002;108(1):173–179.

    Article  CAS  PubMed  Google Scholar 

  36. Singh-Ranger G, Mokbel K. The role of cyclooxygenase-2 (COX-2) in breast cancer, and implications of COX-2 inhibition. Eur J Surg Oncol. 2002;28(7):729–737.

    Article  CAS  PubMed  Google Scholar 

  37. Morre DJ, Morre DM. tNOX, an alternative target to COX-2 to explain the anticancer activities of non-steroidal anti-inflammatory drugs (NSAIDS). Mol Cell Biochem. 2006;283(1–2):159–167.

    Article  CAS  PubMed  Google Scholar 

  38. Forget P, Vandenhende J, Berliere M, Machiels JP, Nussbaum B, Legrand C, De Kock M. Do intraoperative analgesics influence breast cancer recurrence after mastectomy? A retrospective analysis. Anesth Analg. 2010;110(6):1630–1635.

    Article  CAS  PubMed  Google Scholar 

  39. Correa-Gallego C, Tan KS, Arslan-Carlon V, Gonen M, Denis SC, Langdon-Embry L, Grant F, Kingham TP, DeMatteo RP, Allen PJ, D'Angelica MI, Jarnagin WR, Fischer M. Goal-Directed Fluid Therapy Using Stroke Volume Variation for Resuscitation after Low Central Venous Pressure-Assisted Liver Resection: A Randomized Clinical Trial. J Am Coll Surg. 2015;221(2):591–601.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Berri RN, Sahai SK, Durand JB, Lin HY, Folloder J, Rozner MA, Gottumukkala V, Katz MH, Lee JE, Fleming JB. Serum brain naturietic peptide measurements reflect fluid balance after pancreatectomy. J Am Coll Surg. 2012;214(5):778–787.

    Article  PubMed  Google Scholar 

  41. Friese RS, Dineen S, Jennings A, Pruitt J, McBride D, Shafi S, Frankel H, Gentilello LM. Serum B-type natriuretic peptide: a marker of fluid resuscitation after injury? J Trauma. 2007;62(6):1346–1350; discussion 1350-1341.

    Article  CAS  PubMed  Google Scholar 

  42. Bonow RO. New insights into the cardiac natriuretic peptides. Circulation. 1996;93(11):1946–1950.

    Article  CAS  PubMed  Google Scholar 

  43. Aloia TA, Geerts WH, Clary BM, Day RW, Hemming AW, D'Albuquerque LC, Vollmer CM, Jr., Vauthey JN, Toogood GJ. Venous Thromboembolism Prophylaxis in Liver Surgery. J Gastrointest Surg. 2016;20(1):221–229.

    Article  PubMed  Google Scholar 

  44. Bergqvist D, Agnelli G, Cohen AT, Eldor A, Nilsson PE, Le Moigne-Amrani A, Dietrich-Neto F, Investigators EI. Duration of prophylaxis against venous thromboembolism with enoxaparin after surgery for cancer. N Engl J Med. 2002;346(13):975–980.

    Article  CAS  PubMed  Google Scholar 

  45. Gould MK, Garcia DA, Wren SM, Karanicolas PJ, Arcelus JI, Heit JA, Samama CM, American College of Chest P. Prevention of VTE in nonorthopedic surgical patients: Antithrombotic Therapy and Prevention of Thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest. 2012;141(2 Suppl):e227S–277S.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Tzeng CW, Curley SA, Vauthey JN, Aloia TA. Distinct predictors of pre- versus post-discharge venous thromboembolism after hepatectomy: analysis of 7621 NSQIP patients. HPB (Oxford). 2013;15(10):773–780.

    Article  PubMed Central  Google Scholar 

  47. Bellini G, Teng A, Kotecha N, Sutton E, Yang CK, Passeri M, Lee DY, Rose K. The identification of risk factors for venous thromboembolism in gastrointestinal oncologic surgery. J Surg Res. 2016;205(2):279–285.

    Article  PubMed  Google Scholar 

  48. Ho KM, Tan JA. Stratified meta-analysis of intermittent pneumatic compression of the lower limbs to prevent venous thromboembolism in hospitalized patients. Circulation. 2013;128(9):1003–1020.

    Article  CAS  PubMed  Google Scholar 

  49. Day RW, Cleeland CS, Wang XS, Fielder S, Calhoun J, Conrad C, Vauthey JN, Gottumukkala V, Aloia TA. Patient-Reported Outcomes Accurately Measure the Value of an Enhanced Recovery Program in Liver Surgery. J Am Coll Surg. 2015;221(6):1023–1030 e1021-1022.

    Article  PubMed  Google Scholar 

  50. Aloia TA, Zimmitti G, Conrad C, Gottumukalla V, Kopetz S, Vauthey JN. Return to intended oncologic treatment (RIOT): a novel metric for evaluating the quality of oncosurgical therapy for malignancy. J Surg Oncol. 2014;110(2):107–114.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Bodenheimer T, Sinsky C. From triple to quadruple aim: care of the patient requires care of the provider. Ann Fam Med. 2014;12(6):573–576.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Dr. Bradford Kim is supported by the National Institutes of Health grant T32CA009599.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas A. Aloia.

Additional information

Disclosure Information

Authors: Thomas A. Aloia, M.D. has nothing to disclose. Bradford J. Kim, M.D., M.H.S. has nothing to disclose. Editors-in-Chief: Richard A. Hodin, M.D., Timothy M. Pawlik, M.D., MPH, PhD has nothing to disclose. CME Overseers: Arbiter: Timothy M. Pawlik, M.D., MPH, PhD has nothing to disclose; Vice-Arbiter: Melanie Morris, M.D. has nothing to disclose; Question Reviewers: Michael Anthony Edwards, M.D. has nothing to disclose; F. Andrew Morfesis, M.D. has nothing to disclose.

Learning Objectives

1. Define enhanced recovery in surgery

2. Understand all goals of enhanced recovery

3. Discuss several key components of enhanced recovery

4. Understand the team-based approach and buy in required to successfully execute enhanced recovery

Questions:

1. What are the best parameters to measure effective goal-directed fluid therapy (GDFT)?

a. Heart rate

b. Urine output

c. Stroke volume and corrected flow time

d. Blood pressure

2. Which of the following statements are true about narcotics in cancer patients?

a. Patients with tumors expressing polymorphism of the mu-opioid receptor (MOR) will have better survival

b. Opioids can activate vascular endothelial growth factors (VEGF)

c. Opioids should be administered as much as possible to promote enhanced recovery

d. NSAIDs should be avoided in the cancer patient because of their effects on recurrence

3. When compared to traditional pathways, outcomes of enhanced recovery include which of the following?

a. Increased length of stay but decreased costs

b. Improved patient-reported functional outcomes

c. Increased use of narcotics

d. Similar rates of morbidity

4. Select the most critical component of enhanced recovery

a. Bowel regimen

b. Aggressive fluid resuscitation

c. Copious narcotic use to control pain

d. Patient education and engagement

e. Early feeding

5. How long antibiotics should be continued in the perioperative period for antimicrobial prophylaxis?

a. POD 1

b. POD 2

c. POD 5 (if still in the hospital)

d. Until hospital discharge

6. How early can intravenous fluid be discontinued?

a. After 600 mL of clear liquids are tolerated

b. After full liquid diet is tolerated

c. After regular diet is tolerated

d. After passing of flatus

7. For major HPB surgery, when should anticoagulant thromboprophylaxis be started?

a. POD 0/1

b. POD 2/3

c. When INR is normal

d. Never

8. When should the urinary catheter be removed after major gastrointestinal surgery?

a. It should never be placed for gastrointestinal surgery

b. Before extubation

c. After ambulation

d. After tolerating regular diet

CME questions for this article available to SSAT members at http://ssat.com/jogscme/

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, B.J., Aloia, T.A. What Is “Enhanced Recovery,” and How Can I Do It?. J Gastrointest Surg 22, 164–171 (2018). https://doi.org/10.1007/s11605-017-3605-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11605-017-3605-9

Keywords

Navigation